Ministry of Justice

Reducing the number and costs of whiplash claims

A response by the Association of Personal Injury Lawyers

March 2013
The Association of Personal Injury Lawyers (APIL) is a not-for-profit organisation with a 20-year history of working to help injured people gain access to justice they need and deserve. We have around 4,400 members committed to supporting the association’s aims and all of which sign up to APIL’s code of conduct and consumer charter. Membership comprises mostly solicitors, along with barristers, legal executives and academics.

APIL has a long history of liaison with other stakeholders, consumer representatives, Governments and devolved assemblies across the UK with a view to achieving the association’s aims, which are:

- To promote full and just compensation for all types of personal injury;
- To promote and develop expertise in the practice of personal injury law;
- To promote wider redress for personal injury in the legal system;
- To campaign for improvements in personal injury law;
- To promote safety and alert the public to hazards wherever they arise;
- To provide a communication network for members.

Any enquiries in respect of this response should be addressed, in the first instance, to:

Alice Warren, Legal Policy Officer
APIL
3 Alder Court, Rennie Hogg Road, Nottingham, NG2 1RX
Tel: 0115 9435428; Fax: 0115 958 0885
e-mail: alice.warren@apil.org.uk
Introduction

These proposals are based on numerous misconceptions and false assumptions, and, if implemented, will lead to a denial of access to justice for those people who are legitimately entitled to compensation, as well as a variety of other unintended consequences, not least an increase in claims management companies (CMCs) seeking to make money out of unwary claimants and swamping the small claims courts with claims. Judges and the courts will struggle to cope with the increasing number of litigants in person. These unintended consequences may well result in a re-run of the CMCs’ response to the Payment Protection Insurance mis-selling scandal. Claims management companies, which are not bound by the Solicitors’ Code of Conduct, will openly tout for claimants and run very large numbers of what are potentially dubious claims.

Our first concern is about the very essence of the consultation itself: aiming to reduce the number and cost of whiplash claims. Even a reliance upon the highly questionable Association of British Insurance (ABI) estimate that seven per cent of whiplash claims are fraudulent or exaggerated, means that 93 per cent of claims are genuine. Any attempt to reduce the number of overall claims will be arbitrary – a reduction will take place irrespective of whether claims are meritorious or not. How can such a purposeful and wilful attempt to deny justice to injured people be the overriding objective of a Government consultation?

Evidential basis of this response

This response contains new research conducted for the purpose of this consultation which shows:

- Unrepresented claimants risk being gravely under-compensated;
- The majority of cases conclude after a medical report has been obtained;
- Personal injury claims are not sufficiently straightforward to be suitable for the small claims court: complexities including denial of liability; refusal to negotiate; pre-existing medical conditions; contributory negligence and disputed special damages claims are all common to these claims;
- If the small claims track limit was increased to £5,000 as proposed in its various permutations, then virtually all RTA related personal injury claims would fall within its remit.
General comments on the foreword

There are several misleading statements in the foreword of the consultation document.

“Between 2006 and 2012, claims for personal injury caused by road traffic accidents increased by 60 per cent, whilst over the same period the number of reported road traffic accidents fell by 20 per cent (emphasis added).”

The figures for reported accidents will be different from the figures for accidents that have actually taken place. The number of reported whiplash incidents is not the same as the number of whiplash incidents which actually occur. Figures for both the number of road accidents and the number of road casualties are based on STATS19 forms, which are used by the police to record accidents reported to them. Any accident or injury that results from a car accident which isn’t reported to the police will not be included within the figures. But, the compensation recovery unit (CRU) figures are an accurate representation of the number of claims (not incidents) commenced against third party insurers each year. These figures include injuries which have arisen from accidents which have occurred in different years, but which are commenced as a claim within a single year. Any attempt to compare CRU figures with the number of road traffic casualties reported to the police on STATS19 forms is therefore inappropriate and probably meaningless: they record different things.

A closer look at the CRU figures also reveals that there has been a 58 per cent rise in clinical negligence claims in the same period (2006-2012). Unlike for RTA claims, the MoJ does not attribute this rise to an increase in fraudulent claims. Further, a rise in claims does not automatically mean a rise in fraudulent claims. Genuine claims could be on the increase due to increased public awareness of the right to claim compensation for an injury.

“We must, of course, preserve access to justice for the genuinely injured…”

APIL strongly believes that bringing personal injury cases within the jurisdiction of the small claims court will damage access to justice for injured people. A person who brings a claim in the small claims court must fund it themselves, as conditional fee agreements are not suitable for small claims and legal costs are not recoverable from the losing party. This means that most people will be left to represent themselves without the help of a legal professional, as they will simply be unable to afford a lawyer. Such an injured person will be expected to bring a case against a well-resourced defendant insurance company, which will
almost certainly be represented, and which is very often a “repeat player” in the small claims court, with knowledge of how to conduct a claim: something the claimant is likely to lack. This creates an uneven playing field, and at the very least puts the claimant at risk of being unable to prove their claim due to lack of knowledge of the legal criteria and evidential requirements. This will leave claimants under-compensated, as they will have no idea how much their claim is actually worth. APIL's research has shown that for whiplash only claims, the presence of a lawyer meant that the final settlement was around 200 per cent more than if the injured claimant had accepted the first offer made to them. Alternatively, claimants may be able to find some assistance from a lawyer or CMC but they will have to pay for that out of their compensation, which is further discussed below.

“The second looks at the small claims track threshold for the personal injury claims arising from road traffic accidents, which provides a more cost effective route for straightforward claims and self-represented litigants.”

As stated above, a person who brings a claim within the small claims court must fund that case out of their own pocket. How can this be cost-effective for the injured person? It surely cannot be classed as “cost-effective” to have to give away a portion of damages won to pay the costs associated with the case. These costs, even in a relatively straightforward claim, will include obtaining medical reports, data protection act fees, engineering reports, all of which can run into hundreds or even thousands of pounds. The claimant will no longer be compensated fully for his injuries: the fundamental principle which is applied to awards of damages, as expounded by Lord Blackburn in Livingstone v Rawyards Coal Co.¹

General comments on the executive summary

Research relied upon
At paragraph 1, there is a reference to a “2004 comparative study”, which shows that the UK percentage of RTA claims which are for whiplash injuries is significantly higher than for other European countries. This data is unreliable and out of date: it is almost nine years old. In addition, these figures were compiled from a survey conducted by a European insurance body using estimate data provided to it by national insurance representative bodies (such as the ABI in the UK). As a representative of the organisations which pay out on such claims, these figures are profoundly one-sided. Note also that according to the World Bank, the UK has 79 per cent more vehicles per kilometre of road compared with the EU average. If the

¹ [1880] 5 App cases 25
UK’s roads are busier, and towns are more congested, low velocity accidents leading to injuries such as whiplash are more likely to occur.

Cost to the motorist

Paragraph 2, states that approximately 20 per cent, or £90, of the cost of the average motor insurance premium stems from the cost of whiplash injuries. If whiplash injuries account for 20 per cent of the average car insurance premium, accounting for £90 of the cost of the average premium, this would mean that the average premium is £450. But, figures from the AA put the average car insurance premium closer to four figures. In October 2012, the average shop around premium for third party fire and theft cover was £1,594.46. Twenty per cent of that premium would be £318.89. So in fact, £90 accounts for just 5.6 per cent of the average premium. We suggest that the ABI’s calculations in making this assertion are extremely unreliable.

Litigants in person – the small claims court

At paragraph 12, the consultation document notes that district judges usually preside and have a responsibility to equalise any “uneven playing field” where one party is self-represented. Research shows that in reality, the aid which a district judge can provide to a litigant in person is limited. As APIL understands it, a judge is obliged to be impartial and fair to all parties. Accordingly, whilst they can assist litigants in person, to some extent, they cannot actively advise either party to the proceedings. It has been found that Judges “were more reluctant to take an interventionist role where one party was legally represented”.

There is also evidence that district judges are already struggling to cope with the issues caused by litigants in person in family cases, for example cases being delayed because people have not complied with the court rules. In a meeting between APIL and Her Majesty’s Association of District Judges, the district judges indicated that the effects of reduced eligibility for legal aid in family cases had seen a huge increase in litigants in person. As cases take longer with litigants in person who have no ‘professional buffer’ between them and the court, there has been a knock-on effect on the listing of PI cases, for example. A similar effect can be expected if eligibility to claim legal costs in personal injury

claims is denied due to any extension to the small claims limit. Cases will take longer and delays in courts will increase again.5

Litigants in person – inadequate knowledge and representation
At paragraph 15, the paper admits that PI claims have been considered too complex for self-represented litigants. Whiplash, even as a more “straightforward” claim, can be complex and a person who is not legally trained and who will not know how to collect the correct evidence, will struggle to be able to deal with common issues such as the legal causation of their injury and again will have issues in determining how much their claim will be worth. Problems will also arise when the inexperienced claimant is left to calculate a simple schedule of loss. Many would struggle to do this, and there are numerous pitfalls regarding what should be included to ensure that the correct amount of damages is awarded. One such pitfall concerns statutory sick pay. Claimants will be left out of pocket or undercompensated because they do not realise that, unless the defendant is their employer, they must reimburse their employer for statutory sick pay if their claim is successful. It is not for the insurer to establish this and many claimants will be unaware so will not factor this in to a schedule of loss. If refundable sick pay is not included in the claim, but the case is successful, the employer can insist on the sick pay being paid back to them from the claimant anyway, leaving the claimant out of pocket. The same danger applies to private healthcare treatment costs. Many claimants do not realise that it is a requirement of their policy with the healthcare provider to include treatment costs where the treatment is provided as a result of the injury sustained in the accident. The claimant will again be liable to pay this back and if not recovered from the compensator, it would come from their own pocket, or damages that they have been awarded.

APIL surveyed its membership to find out what areas of complexity were present in their most recent personal injury claims with a value of up to £5,000. The survey revealed a large number of issues which regularly contribute to complicate such personal injury claims. They include: complete denial of liability; contributory negligence alleged; liability admitted after the pre-action protocol period; refusal to negotiate; facts in dispute; pre-existing medical conditions; ongoing medical condition as a result of the accident; complicated special damages (disputed special damages claims); rehabilitation.6

5Meeting between APIL, FOIL and Her Majesty’s Association of District Judges on 25 October 2011.
6See Appendix B for the results of APIL’s research and the original survey sent to APIL members.
Unrepresented claimants will be unable to deal with the majority of these complexities on their own and be liable to settle early and not receive the full amount, or any, of the compensation that they deserve. This is a clear denial of access to justice.

Litigants in person – under-settlement inevitable
APIL has conducted research to investigate the added value which instructing a lawyer brings to the success of a personal injury claim. The research, available at Appendix B, clearly shows that for claims involving whiplash, instructing a lawyer ensures that the claimant receives, on average, 200 per cent more than if the injured person had accepted the first offer made to him while unrepresented. The effect of this is that unrepresented claimants risk accepting offers of around £1,000 from insurers rather than the average sum of £3,173.62 to which they are entitled, to ensure they are adequately compensated.

Where whiplash forms part of a claim where other injuries have also been suffered, then the risk of under-compensation for unrepresented litigants is equally stark. For these claims, the presence of a lawyer ensures that the claimant’s final award is 150 per cent more than if the injured person had accepted the first offer made to him while unrepresented. The average first offer made is £1,570.83 and the average final settlement with a lawyer conducting the claim is £4,195.65.7

Tackling fraud
Paragraph 11 states that it would be more economically viable for insurers to challenge exaggerated or fraudulent claims in the small claims track because claims pursued through this track usually result in both sides bearing their own costs. We submit that there are already strict and robust rules that are in place to tackle fraud, but some insurers choose not to take advantage of the system which is already in place. The small claims limit should not be raised, thus disadvantaging genuine claimants, just because some insurers choose not to use the safeguards already in place to prevent fraud.

Allegations of fraud are extremely serious, and if proven can have significant consequences, with the possibility of criminal prosecution. The insurer might adduce evidence for example, from an expert engineer, in an attempt to allege fraud.

Once fraud is alleged, the district judge will be obliged to tell the claimant of this and allocate the case to a different track in any event, where the procedure will be more involved. The small claims track will be an unsuitable outlet for the insurers to challenge suspected

7 See Appendix B for the results of APIL’s research.
fraudulent claims. The small claims track does not use statements of truth, and under CPR 27.8(4), evidence is not given under oath. Several safeguards that may prevent dishonesty are not present in the small claims system.

Such a claimant may then also struggle to find anyone to represent them in such circumstances at that late stage and will not be able to, or will have great difficulty challenging this accusation. Unaided, they will not know how to access or present suitable evidence in rebuttal. With such serious consequences, the risk is that many genuine claimants will be deterred from pursuing their legitimate claim. We would expect any properly resourced and researched Impact Assessment to demonstrate this.

Further, from an insurers’ point of view, raising the small claims limit will not make it any more cost effective for fraudulent claims to be challenged, as the Government assumes. Anthony Hughes, a former president of FOIL, has said that the assumption that increasing the small claims limit will allow insurers to challenge more cases is “blatantly ridiculous. The small claims jurisdiction is for the most straightforward of cases...there are various exceptions contained within the rules which allow cases on a value appropriate for the small claims track to be moved into one of the higher jurisdictions and therefore attract costs”. This will not make it any easier or more cost effective for fraudulent claims to be challenged.

General comments on Part One: The Issue

At paragraph 19, whiplash is defined incorrectly. “*Whiplash is the term used to describe the neck pain which occurs after the soft tissue in the spine...*”. Whiplash is the mechanism by which injury is sustained rather than the injury itself. According to the Chartered Society of Physiotherapists, Whiplash Associated Disorder (WAD) occurs as a result of bony or soft tissue injury caused by whiplash injury to the neck during (amongst other things) a rear end or side impact motor vehicle collision. WAD can be a disabling condition that goes beyond just neck pain, as it is characterised by a range of signs and symptoms and can present complex challenges to clinicians. The syndrome involves trauma to a multiplicity of tissues in the cervical spine and it can affect other areas of the vertebral column, leading to back pain

8 CPR Parts 32 and 33 are excluded by CP 27.2(1)(c) and (d)
9 Litigation Futures 17 January 2013 “‘Ridiculous’ to see higher small claims limit as answer to fraud, says ex-FOIL chief” Neil Rose
amongst other symptoms. According to research by the Chartered Society of Physiotherapists (CSP), people with WAD may present with any of the following symptoms: pain, paraesthesia, anaesthesia, stiffness, reduced function, visual disturbances and impaired cognitive function\(^\text{12}\).

Paragraph 19 also states that whiplash is “difficult to diagnose with certainty.” Most medical conditions, aside from those visible to the eye, for example a fracture, are difficult to diagnose with “certainty.” Yet a trained medical professional will be able to carry out tests and question a patient to enable them to correctly diagnose whiplash. According to the CSP, assessment of the symptoms should include the site of pain, the quality, frequency and intensity of pain, severity and irritability and links between the symptoms\(^\text{13}\). Answers to questions which help the doctor find out the speed of the onset of pain, its initial severity, the presence of arm pain, whether the claimant was aware that their car was about to be hit, whether the claimant was wearing a seatbelt and the site of pain will all lead to an accurate diagnosis. Evidence shows that almost 90 per cent of whiplash sufferers are diagnosed by a medical professional\(^\text{14}\). Civil cases require assertions to be proved on the balance of probabilities. Therefore, as long as there is enough evidence to show that a whiplash injury is more likely than not to have occurred, then the claimant will succeed.

There are also several assumptions made in part one of this consultation paper regarding a claimant’s GP. Firstly, it is assumed in the consultation document that the claimant goes to their own GP for a medical report. This is incorrect. It is extremely rare for a medico-legal report to be commissioned from a claimant’s own GP. Of course many claimants will have gone to their GP for advice and treatment of their injuries. However, defendant insurers will usually point to the failure to visit a GP for diagnosis or treatment as evidence that the injury did not occur as suggested, when the claimant has simply decided to self-treat the obvious symptoms of whiplash.

Second is the assumption that, on attending their family doctor, the doctor feels obliged to side with their patient; that they feel pressured to come to a more favourable conclusion for their patient. This is simply not true. GPs have professional integrity and a reputation to uphold. They would not be likely to compromise this and falsify a diagnosis simply to please

a patient. Anecdotal experience shows that this does not happen in applications for state benefits. See also our comments below on the importance of the medical expert’s statement of truth. There is clear evidence from our members that medical experts do often provide negative reports. It is to be noted and understood that where a negative medical report is obtained the claim then does not proceed. Therefore, insurers will not see and be aware of those reports where such negative opinions are given.

General comments on Part Two: Better Medical Evidence

There is confusion in paragraphs 25 and 31 as to what the current process for making a claim for whiplash is. It is not part of the process for a person to ask their GP to ‘certify’ that they have sustained an injury. People go to their GP not because it is a compulsory part of the process, but to seek treatment and guidance and also, as stated above, because insurers would discredit their claim if they hadn't seen a doctor- the insurer will state that the claimant cannot have been legitimately injured because they have not even been to see a GP. ‘Certification’ whatever that may mean, is not part of the usual procedure for making a personal injury claim.

Paragraph 32 refers to ‘a standard fee of £195’ for such transactions (we assume this is the so-called ‘certification’ referred to in the previous paragraph). Insurers may have negotiated fees with certain medical reporting agencies for their own medical reports, but this is not an industry-binding fee. It is not a fee that applies to information provided by a GP, which is more likely to be governed by data protection charging limitations specified by statute (routinely a maximum of £50).

Also paragraph 33 is incorrect in its assertion that: “If the insurance company representing the driver decides to contest the claim, they may also ask for a report, usually from the claimant’s GP. This report would normally be returned direct to the insurance company.” In fact, this would be very unusual indeed, as it would be a serious breach of patient confidentiality. This evidently demonstrates that the Ministry of Justice has failed to understand the claims process. An independent expert is always instructed to prepare the report, which would be provided, by that expert, with a statement of truth annexed to it. This is an important statement which verifies the expert’s understanding that his first duty is to the court, *not to the client*. The wording of the statement is set out in PD 35 of the CPR. It states:

> “I confirm that I have made clear which facts and matters referred to in this report are within my own knowledge and which are not. Those that are within my own knowledge I
confirm to be true. The opinions I have expressed represent my true and complete professional opinions on the matters to which they refer."

CPR 32.14 sets out the consequences of verifying a document containing a false statement without an honest belief in its truth: “Proceedings for contempt of court may be brought against a person if he makes, or causes to be made, a false statement in a document verified by a statement of truth without an honest belief in its truth.”

Further evidence of the Ministry’s failure to understand the claims process arises in paragraph 36 where reference is made to a ‘reporting form’. There is no such form (although of course, individual solicitors and insurers may have their own templates to use as a guide for instructing experts) and indeed, if medical reports were provided in a ‘standard’ format, there would be the clear concern that the report provided contained ‘generic’ content and was not sufficiently tailored to the individual injured person.

Questions

Q1. Do you agree that, in future, medical reports for whiplash injury claims should be supplied by independent medical panels, using a standard report form, and should be available equally to claimants, insurers, and (for contested claims) the courts?

Q2. If not, how would you address the problems listed at paras 35-39 above?

Q3. Which model should be used for the independent medical panels- Accreditation, national call-off contract or some other variant?

Medical Panels

Insurers have been criticised for not being robust in their challenges to claims for whiplash associated injury. Insurers say it is too difficult to diagnose. However, for some years insurers have routinely objected to the provision of reports by experienced consultants in accident and emergency medicine or orthopaedic consultants with an interest in injuries affecting the spine on grounds of cost. Instead, insurers have insisted on the commissioning of reports by independent general practitioners who provide cheaper reports but do not necessarily have the right experience or skill set to diagnose whiplash associated injury and provide a reliable prognosis.

Despite these issues, APIL believes that there should not be a panel of medical experts. To ensure that a monopoly of service providers is not created, and to allow the claimant a free choice of which medical expert to use, accreditation is preferable as a method of regulating
those who offer to provide medical reports. If claimants do not have legal advice, it is even more important that the medical expert is wholly independent and the process is transparent. We are concerned that medical panels would not be fully independent with a transparent process.

Centralised panels would create more problems than they would solve. The panel should not be controlled by any insurer representative, such as the ABI, as this would lead to bias. But who would control the panel? Who would register experts to it and control entry to the panel? What would the appeal process be?

Accreditation

As already indicated, to ensure that a monopoly of service providers is not created, and to allow the claimant a free choice of which medical expert to use, accreditation is preferable as a method of regulating those who offer to provide medical reports. If claimants do not have legal advice, it is even more important that the medical expert is wholly independent and the process is transparent.

As a method of ensuring that experts are not incompetent or fraudulent, APIL supports the idea of a register of accredited medical practitioners. There are already accreditation schemes in place. Premex, a nationwide medico legal reporting service, is one example. This company offers a large panel of experts who have been thoroughly checked and validated including their General Medical Council (GMC) registration; specialist register membership; professional indemnity insurance and the GMC's Fitness to Practice Panel and Interim Orders Panel. Reports are vetted and quality controlled to ensure they meet the requirements of the court and give a clear prognosis. There are many other reputable medical reporting organisations (MROs), which have high standards and their own accreditation schemes. We have no objection to thoroughly accredited schemes being adopted for the benefit of all parties; but we are concerned that these schemes should be independently run. We would prefer that any existing MRO would be entitled to apply to join an accreditation scheme. There is also an existing voluntary association of MROs (AMRO).

We are unsure as to how the process of assigning an accredited expert would work in practice. However, if the claimant does not have a choice of medical practitioner to prepare a report, then there must be a way for the claimant to challenge the validity of that report and this process of challenge should be neutral, efficient and effective.

Standardised report forms
The use of standardised forms could mean that the necessary detail is not provided and reporting doctors would have to confine their response to a standard template or a drop-box option, which is ill fitting for the circumstances. Problems with standardised report forms have already been experienced by those undertaking Work Capability Assessments (WCA), overseen by Atos. WCAs are used to determine who qualifies for disability benefit. The Commons Select Committee for Work and Pensions has criticised this process. Claimants using the system have criticised it for being too rushed, leaving the claimants with the impression that they have not been properly assessed. The yes/no format of the assessment is too narrow, leaving little opportunity for the client to explain their condition. Healthcare professionals also often fail to listen or interact with the client, which can lead to mistakes and a failure to properly assess conditions. In addition to these problems that have already come to light, it is counter-intuitive to standardise forms when one of the main aims of the new process is to combat exaggerated claims. How is it possible to tell who is exaggerating if a doctor is not free to describe in their own words the diagnosis that they have given the patient and their expert impression and judgement? This will surely make it even harder to determine who is exaggerating and who is not; and easier for those who are exaggerating to do so. See also our comments above on this subject.

Q4. Do you consider that an element of peer review should be built into every assessment, or only for a sample of assessments for audit purposes?

APIL welcomes an element of peer review, but does not see it as necessary that every assessment should be reviewed. This would add an extra layer of cost, delay and bureaucracy to the claims process. We can see many difficulties with the practicalities of peer review, and we seek clarification as to how this would work. We would support peer review in a random sample of assessments each year to ensure quality control of, and consistency within, the scheme. However, principles of natural justice require that facilities must exist to enable a claimant to challenge evidence at his or her own risk (see above).

Q5. How should costs be dealt with and apportioned?

The losing party, usually insured, should pay for successful claims by the claimant, but it is vital that this does not mean that the insurer should have control or influence over any panels. APIL believes that the best principle here is that insurers must pay for successful claims. We are strongly against an insurer-funded system, as this would mean that the insurers would have the most control, leading to a one sided, biased decision making process.

15http://www.publications.parliament.uk/pa/cm201012/cmselect/cmworpen/1015/101506.htm
In the current small claims court, the maximum costs that can be recovered are the court fees and a maximum of £200 for the expert report obtained. This would be insufficient for any claims for injuries which are valued at the top end of any extended small claims limit, leaving the injured person out of pocket.

Q6. Should the Small Claims Track threshold be increased to £5,000 for RTA related whiplash claims, be increased to £5,000 for all RTA PI claims or not changed?

APIL prefers option 3: that the threshold for small claims is kept the same. This is because we firmly believe that the small claims court is no place for injured people. Paragraph 66 of the consultation document states that “whilst the Small Claims Track is designed with facilitating access to justice by self-represented litigants at its core, there is a risk that claims will not be presented with equal skill, as the defendant is likely to be represented professionally.” This is not a “risk”. This inequality will almost certainly occur, and will leave claimants severely disadvantaged in several ways: risk of under-compensation, likelihood that genuinely injured claimants will be deterred from making claims at all, an inability to correctly instruct medical experts to support their claim and lack of full compensation.

Risk of under-compensation

APIL has conducted research to investigate the added value which instructing a lawyer brings to the success of a personal injury claim. The research clearly shows that for claims involving whiplash, instructing a lawyer ensures that the claimant receives, on average, 200 per cent more than if the injured person had accepted the first offer made to them. The converse of this is that unrepresented claimants risk accepting offers of around £1,000 from insurers rather than the average sum of £3,173.62 to which they are entitled, to ensure they are adequately compensated.

Where whiplash forms part of a claim where other injuries have also been suffered, then the risk of under-compensation for unrepresented litigants is equally stark. For these claims, the presence of a lawyer ensures that the claimant’s final award is 150 per cent more than if the injured person had accepted the first offer made to them while unrepresented. The average first offer made is £1,570.83 and the average final settlement with a lawyer conducting the claim is £4,195.65.\(^\text{16}\)

Deterrent for genuine claimants

\(^\text{16}\) See Appendix for the results of APIL’s research.
APIL’s independent research found that 70 per cent of claimants would not want to pursue a whiplash claim without the help of an independent solicitor.17 The Ministry of Justice published a review in June 2011, on research into litigants in person in the civil and family courts. “Litigants in person could face problems in court, such as understanding evidential requirements, identifying legally relevant facts and dealing with forms. It was suggested that the oral and procedural demands of the courtroom could be overwhelming.” Further, “the weight of the evidence indicates that lack of representation negatively affected case outcomes”, and there was also evidence that litigants in person create extra work for court staff and the judiciary.18

In cases dealt with in the small claims track the claimant would have to prepare for the disclosure of relevant documents and to prepare a witness statement. A claimant would not know when and if to disclosure the documents and would also not know what to do if they were unhappy with the report for some reason. Further problems will occur when the claimant has to value their claim. How will a claimant know how to do this if they have had no guidance or any experience of doing so?

Litigants in person will not know where to start with regard to medical evidence. Our research indicates that the majority of claims valued at less than £5,000 conclude after the defendant has received a medical report. Assuming these cases were to be dealt with under the small claims procedure, the injured person would have to obtain his own medical evidence. It is unlikely that the ordinary injured person would be able to correctly instruct a medical expert to prepare a report which would be sufficient to support his claim.

In addition to this, if whiplash claims or personal injury claims in general were to be allocated to the small claims track, litigants in person would find themselves having to pay the issue fee (£35-£120), allocation fee (£40) and hearing fee (£25-£325). Whilst those who are represented have these costs paid for by the solicitor (who then claims them back if the case is successful), a litigant in person would have to pay these costs upfront. This may simply be financially prohibitive for many people, particularly when they are likely to be uncertain as to the whole process and confused as to whether such fees are recoverable from the defendant. It simply cannot be just that a person injured through the negligence of another must pay up to £485 in legal fees in order to receive adequate financial redress, yet this is the natural consequence of the proposed changes.

Supporting expert evidence

17http://files.apil.org.uk/campaigns/the-whiplash-report-2012.pdf

18Ministry of Justice Research Summary 2/11 “Litigants in person: a literature review” June 2011
Instructing experts will be another area in which litigants in person will be disadvantaged against the insurers who are regular users of the system. Further problems will arise as the claimant will also not know when expert evidence (other than medical evidence) is required, let alone how to identify and instruct an expert.

Unintended consequences:

Failure to reduce fraud: moving the majority of claims to the small claims track will reduce the number of genuine claims, but it will not stop fraud. In order to afford legal help, people are likely to turn to claims management companies (CMCs) to conduct their claims, probably by way of Damages Based Agreements (DBAs). A window of opportunity will therefore be opened to CMCs. Representing people in the small claims court will become their next business model. The texting and advertising that is currently synonymous with CMCs will focus on encouraging people to make claims for whiplash. This has the potential to drive up the number of fraudulent claims, rather than help to reduce them. We believe that such CMCs will not deal with claims to the same standard as a trained and skilled legal representative, and will be likely to accept the first pre-medical offer made by the insurer, as they will fail to investigate properly. Insurers will take advantage of CMCs just wanting a quick and easy settlement. This will leave the claimant largely under compensated in such cases. On top of this, CMCs charge fees of up to, or in some cases more than, a third of the overall compensation awarded to the claimant. The claimant will therefore only receive 70 per cent of the compensation that the court awarded them for their injuries- this is not full and fair compensation.

Cold calling and texting – another PPI? Raising the small claims limit will create an advice gap which will inevitably be filled by CMCs and this will have the opposite effect to that which is intended by Government. The involvement of CMCs is likely to result in more exaggerated claims being brought as cold calling, texting, and advertisements encouraging people to claim for whiplash will become even more prevalent.

The Government can expect similar levels of intrusive advertising for such claims as it currently sees for payment protection insurance (PPI) claims. The MoJ says in its report, *The PPI Claims Market: Dealing with malpractice*20 “PPI CMCs now account for the vast majority of consumer and non-consumer complaints we receive.... the reaction of CMCs to the mass miss-selling of PPI has brought with it a fall in compliance standards and an

increase in poor practices." Such poor practices include: ‘phishing exercises;’ extensive or inappropriate use of data subject access requests; unsolicited text messages and marketing calls.

At the same time use of these CMCs will lead to the potential for the under compensation of genuinely injured people as they will know no better than to accept the first pre-medical report offer made by the insurance company.

Raising the small claims limit will also not be a barrier to organised crime. Fraudsters intent on making fraudulent claims will work out how to use the small claims court procedure effectively. For it to be the norm for claims to be brought by individuals removes the filter that regulated solicitors bring to the system. It will not be unusual for claims to be started and then allowed to lapse by claimants when insurers contest a claim, therefore fraudsters can bring lots of claims without arousing suspicion.

Q7. Will there be an impact on the RTA Protocol and could this be mitigated?

The RTA Protocol and its electronic portal will be affected by any increase in the small claims limit for personal injury claims (or the proposed sub-divisions) because the vast majority of the cases that would have previously been dealt with within the Protocol, through the Portal, would now fall into the small claims track. Only claims between £5,000 and £10,000 will be able to be submitted through the portal using the RTA Protocol.

The vast majority of RTA/whiplash associated injury claims are worth between £1,000 and £5,000\(^{21}\) and so the Protocol and the electronic portal will be greatly marginalised. Given that the costs of running the portal are to be shared between claimants and defendants, if numbers of portal claims fell then the cost per claim would have to increase dramatically, thereby negating any savings that could potentially be made. Paragraph 81 of the consultation document indicates that the Government is looking to subsequently allow unrepresented claimants to use the Portal, and eventually make the Portal compulsory for these cases in the small claims track.

There are serious Data Protection Act implications in this proposal which have not been properly explored by this consultation. When the original Portal was being set up, there was a genuine concern about security of personal information, such as National Insurance numbers, personal addresses, dates of birth, medical information and the like. There was a general view that all users of the Portal would have to be pre-registered and vetted by the

\(^{21}\) See appendix B for APIL’s research.
Portal administrators to ensure that the data contained within the Portal could remain secure. Allowing unrestricted access to the Portal by members of the public, unrepresented by regulated entities such as law firms or insurers would carry serious data protection risks. Unrepresented claimants will also clog up the Portal administration with enquiries because they would not have the knowledge or advice to enable them to use the system correctly.

This would also be extremely disadvantageous for the more vulnerable in society, for example the elderly or those with learning difficulties; those who do not have access to the internet (including those who live in some rural areas of the UK, where internet access is either non-existent or intermittent and unreliable), or those who would struggle to understand how to operate the portal without outside help. These people might then be put off bringing a claim, another example of denial of access to justice. A fully resourced Impact Assessment would need to be carried out.

Q8. What more should the Government consider doing to reduce the cost of exaggerated and/or fraudulent whiplash claims?
APIL is as committed to removing any exaggerated and fraudulent whiplash claims as the Government and insurance industry. These practices have the capacity to damage access to justice for genuinely injured people: some injured people are reluctant to make a claim for fear of being branded a fraudster, or responsible for increasing insurance premiums.

We recommend that the Government should focus on publicising the consequences of fraudsters being found out, perhaps in television campaigns similar to those for the Department of Work and Pensions. This will reduce the perception that “everyone is doing it” and that the consequences are minimal.

We believe that the Government could do more to tackle fraud by adopting APIL’s ten point plan which is aimed at reducing fraudulent whiplash claims as follows:

Apil calls for

1. Free and prompt exchange of information between the road traffic accident (RTA) claims portal and the Insurance Fraud Bureau to facilitate identification of fraudulent behaviour at the earliest possible opportunity.

2. Claimants to be subject to a standard, written statement of truth which must be explained to them by their solicitors. A document to be signed by either the claimant or the solicitor to confirm that the claimant understands the
commitment behind the statement of truth. Breach of the statement may amount to fraud and may make the claimant liable to prosecution.

3 Insurers to be banned from making offers of compensation before a medical report has been seen: the medical report is a critical factor in ensuring a claim has merit and that accurate compensation is paid.

4 The rules governing the conduct of solicitors, insurers and claims management companies to be amended and standardised to prevent offers of gifts or cash inducements being made to potential clients.

5 Robust enforcement of the imminent ban on the sale of claimants’ personal details by the defendants’ insurers.

6 Any party who instructs an expert to give the other party a list of the names of one or more experts he considers are suitable to instruct beforehand, to ensure the expert is accepted as credible by both sides.

7 Development of guidance to assist medical experts to identify and understand whiplash claims. The guidance should be developed in conjunction with the relevant medical organisations.

8 Photographic identification of the claimant to be required by the medical expert: if this cannot be produced, the omission will be included in the expert’s report.

9 The claimant’s solicitor to organise access to relevant medical records where a medical expert is to be instructed.

10 ‘Spam’ or ‘cold’ texting to be banned.

This document forms part of APIL’s Whiplash Report which was published in late 2012, and which is attached, in full, as appendix A.

Comments on the Impact Assessment

Questions 9, 10, 11 and 12 are actually restricted to equality screening and not to the impact assessment at all.

Accordingly, APIL would like to comment on the impact assessment as follows:-

It is repeatedly stated that allowing a case to be heard in a small claims court would significantly reduce costs making challenging claims more economically viable for insurers and reducing costs overall. This is apparently deemed a benefit because you say that insurers are committed to passing on savings to customers in the form of cheaper insurance premiums. This is a poorly defined generalisation with no guarantee.
The proven track record of the insurance industry as evidenced by case examples provided to the MOJ on many occasions (including this response) is that they will frequently decline to pay compensation and defend meritorious claims and a raise in the small claims limit will make it much easier for them to do so.

The insurance industry has a proven track record as evidenced by numerous examples of case histories provided by the claimant lawyers to the MOJ that they will deliberately under settle cases where they can. A senior insurance representative has been known on a Chatham House basis (which means that his name cannot be disclosed) to say that the insurance industry relies upon under settlement and makes far more by under settling claims than they have lost by the alleged abuses of the system seen in the likes of the Liverpool County Courts.

It is repeatedly stated in the impact assessment that if the small claims limit is increased, those with BTE policies will suffer no detriment. However, a cursory glance at a policy issued by one insurance provider shows that it was sent out under cover of a letter which said as follows: -

“If during this matter the case is transferred out of the fast track and into the small claims, please advise, as we will need to agree alternate terms.

It cannot and must not be assumed that if the small claims limit increases BTE providers will or will continue to provide cover for legal expenses.

Introduction

There is reference, at paragraphs 1.9 and 1.19 to figures, which have not been verified by the Government.

It is said in para 1.2 that the costs generated through increased levels of compensation have been cited by insurers as a reason behind the growth in motor insurance premiums in recent years. This has not been verified and even if it were true, blurs a distinction between genuine claims and fraud, which is a criminal activity, which should be dealt with by the Government and/or the insurance industry as an entirely separate issue and not by withdrawing access to justice from legitimate genuine claimants.

Policy Options under Consideration

It is conceded under paragraph 2.5:
“It should be noted that MOJ is planning to implement a number of other reforms in April 2013 which will affect the “base case” against which these further reforms will impact. This includes measures implemented through Part 2 of the Legal Aid, Sentencing and Punishment of Offenders Act 2012, which are expected to reduce the overall number of PI claims being made “(including a ban on referral fees)”.

APIL strongly suggests that it is unnecessary and inappropriate to raise the small claims track limit in the light of the above reforms, which include extending the portal, slashing portal costs and introducing fixed costs for claims which fall out of the portal.

In paragraph 2.8 the impact assessment says “this impact assessment therefore provides some anecdotal evidence from some sources including research and reports from industry bodies. These data are provided for indicative purposes to inform this impact assessment and we will seek further information as part of the consultation exercise. If additional data is available, we will undertake further analysis to inform future impact assessments”

APIL agrees that the evidence is largely anecdotal and for the most part it comes from and favours the insurance industry.

Option 1

Under Option 1, paragraph 2.13 of the impact assessment, APIL agrees with paragraph a in relation to an accreditation scheme. As set out above, APIL believes in fact, the analysis, diagnosis and treatment of whiplashes is a much more scientific exercise than the Government suggests and the use of properly trained an accredited medical specialists in this field will go a long way to weeding out fraudulent or exaggerated claims.

Accordingly, APIL strongly agrees with paragraph 2.28, that the appointment of properly qualified medical experts through an accreditation scheme would result in a reduction of unsuccessful, unmeritorious or exaggerated or fraudulent claims.

Option 2

Option 2 to increase the small track claims limit for personal injury whiplash claims – paragraph 2.50, APIL agrees that the number of appeals would be bound to increase and suggests that increasing the small claims limit would have a dramatic effect on court resources because of an increase in claims brought by self-represented claimants with no understanding of the tort of negligence and/or how to present a claim or argue issues such as causation and contributory negligence with insurers represented by lawyers.
APIL disagrees with the assumption that judicial discretion will continue to be used to allocate complex low value cases to higher value tracks. The rules governing allocation are very strict and a Judge has no discretion to move the matter into a higher track unless all parties agree.

Under sections 2.52 onwards dealing with “Changes in incentives for defendants and the costs faced by claimants” in the groups categorised under a, b, c, and d, APIL fundamentally disagrees with the assumptions made in paragraph 2.55. This passage says:

“For groups b and d, the number of claims contested for this proposal would depend upon a change in the behaviour of the defendants. It is anticipated that increasing the small claims track limit for relevant RTA cases might encourage insurers to contest more cases than currently because there would no longer be the same degree of risk of bearing the claimants legal costs if unsuccessful. An increase in the number of contested claims would move claims which are currently settled before they reach court (including some whiplash claims initiated through the RTA Protocol) into the small claims track. The Government intention is that many such cases might be unmeritorious or exaggerated.”

The expression “the Government’s intention” is not understood and it is assumed that the impact assessment intends to say “the Government’s assumption”. In any event, APIL fundamentally disagrees with the Government’s apparent assumption that the insurance industry only defends cases which are unmeritorious or exaggerated. The insurance industry owes no duty whatsoever to a third party claimant, but owes its duty to its shareholders and then to the policy holders.

Furthermore APIL suggests that the number of claims will dramatically increase and the Government underestimates the number of unmeritorious claims, which are weeded out by solicitors as having no reasonable chance of success.

Group C: Contested cases moving from the fast track to the small claims track where claimants do not have BTE insurance

Dealing with incentives in cases moved from fast track to the small track where claimants do not have BTE insurance, it is suggested that on a number of occasions that the impact on claimants incentives is ambiguous. APIL disagrees because these claimants would be left struggling with a complex and unfamiliar system on an unequal basis where they are self-represented and the defendant’s insurers can afford the luxury of lawyers. It is strongly suggested that this will dramatically impact upon their incentive to pursue the case and therefore the assumptions made by the MOJ are incorrect.
It is further disingenuous to say that “the small claims track was designed to be less formal and allow people to resolve disputes between themselves without professional legal representation and with little or no recoverable costs”.

That comment presupposes that the claimant is in a position to prepare the case without professional legal representation and to fight their corner against a well-armed insurance opponent. It would be fairer to say that the small claims track prevents the claimant from resolving disputes with professional legal representation because they will not be permitted recoverable legal costs. This entire paragraph (2.104) appears to assume that accident claims are appropriate for the small claims track and it is strongly suggested that they are not.

Under the section entitled “Costs” paragraph 2.109 says; “however, the small claims track is designed so that parties are able to represent themselves and it is assumed that some proportion of claimants would choose to do so. For this proportion of claimants, they may face time and financial costs associated with preparing their own case”. Once again this is disingenuous and ignores the obvious historical fact that most claimants do not choose to represent themselves and would indeed be incapable of doing so and would be at a major disadvantage in any small claims track hearings.

Group D- Uncontested claims which may now be contested in the small claims track where claimants do not have BTE insurance.

APIL objects strongly to paragraph 2.130 “claimants whose claims would previously have been uncontested and are now contested successfully, would lose compensation payments as a result of this proposal. However in these instances, the compensation that they would have previously received would have been unnecessary.” Once again this assumes that the only cases, which would be successfully contested by the insurance industry, will be unmeritorious cases which they should not be paying out on in the first place. Whereas it is strongly suggested that if the small claims track limit is increased, self-representing claimants will lose deserving cases because they will be facing well prepared experienced insurance organisations that have the benefit of legal representation and unlimited finance.

The assumption throughout this impact assessment appears to be that solicitors add no value and are not required by claimants in this process, whereas they may be required by defendants.

The impact assessment is singularly lacking in setting out the benefits of legal representation to claimants and the importance of the parties being on an equal footing as
set out in the overriding objective. APIL strongly refutes this assumption. Claims in tort can become very complicated, very quickly when for example; an issue such as contributory negligence, causation or even a difficult issue on negligence is raised.

APIL strongly agrees with paragraph 2.150 “There is a risk that raising the small claims track limit for RTA and PI claims may reduce access to justice for some claimants. In addition to higher costs faced for some claimants, if victims of whiplash do not have legal advice they may not pursue valid claims, or may not challenge insurers if valid claims are rejected. Victims may also significantly undervalue their claims and be disadvantaged in negotiations with defendants who may continue to utilise professional legal representation resulting in an “inequality of arm” between claimants and defendant. As mentioned above, this may result in claimants receiving less compensation than is fair given their injuries.”

APIL further agrees with paragraph 2.151 that there is a significant risk of law firms requiring staff reductions or indeed closing down their businesses.

APIL disagrees with paragraph 2.153 and suggests that there will be an intolerable strain on HMCTS resources.

APIL disagrees with paragraph 2.154, that Judges have the power to allocate to the fast track as a matter of discretion. As mentioned above, this is a matter clearly set out in the rules and the Judge does not have unfettered discretion.

APIL disagrees with paragraph 2.156 that there would be the same rate of appeals as there are now. It is suggested that litigants in person, who do not understand the law in relation to appeals are more likely to appeal if they feel aggrieved.

Option 3 – Implement options 1 and 2 together

APIL’s objections to the impact assessment in this paragraph largely reflect its comments made in relation to proceeding paragraphs.

At paragraph 2.175 “Wider social and economic benefits”, the Government mentions savings from reduced overall costs to defendant insurers may be passed onto consumers in the form of lower motor insurance premiums as a result of this proposal. In response to the Government’s recent summits on motor insurance costs, the ABI has stated that “insurers will pass any saving onto customers that result from unnecessary and excessive costs being removed from the system”. Even if this promise is accepted at face value, it is very unique and it is suggested that the Government is wise to use the word “may” in the above passage.
Furthermore there seems to be no part of this impact assessment dealing with the disadvantages as opposed to the benefits in relation to issues other than costs.

What is missing from the impact assessment is the social inequality of returning to a system whereby the wealthy can afford access to justice, yet an ordinary working man or woman who cannot afford legal representation will have to represent themselves in an unfair and unfamiliar environment, dealing with issues that they do not understand against a well-represented opponent. This is particularly the case if the claimant concerned is suffering from any form of disability, or is illiterate or poorly educated.

Furthermore APIL suggests that there is a significant economic disadvantage of forcing organisations to close, as opposed to waiting to see if they can respond to the dramatic reduction in costs already imposed on them by extension of portals and in position of a fixed fee regime based upon anecdotal evidence provided by insurers, instead of careful negotiation.

Paragraph 2.81 suggests that the impact on providers of legal services is ambiguous and APIL suggests that it is not ambiguous at all and there will clearly be a massive reduction in demand for services.

Conclusions on the Impact Assessment

It is noted that the Government apparently understands the considerable danger that increasing the small claims limit will result in a denial of access to justice to a number of meritorious claimants because either they will not bring their claim or they will under settle that claim. However, it is suggested that this impact assessment does not deal with those issues in sufficient detail and therefore underestimates this impact, particularly on those with disabilities.

In addition, this impact assessment is based on a number of assumptions, which are believed to be erroneous and based upon anecdotal evidence provided by the insurance industry.

Furthermore there appears to be an assumption that the insurance industry will act according to the principles of fairness or settle appropriate or meritorious cases whilst defending unmeritorious cases. This conflicts with the experience of the claimants organisations over many years and indeed with a basic understanding of the business model of insurers.
Claimant organisations have submitted evidence in the form of a considerable number of examples over the years of cases in which the insurance industry has initially refused to pay out on a case and then ultimately, either lost at trial, or conceded liability at a late stage and made a payment out even though there was no significant change in the factual basis of the claim or the evidence. It is strongly suggested that any assumption that defendant insurers do not behave badly in relation to claims is naive. Furthermore it is strongly suggested that the insurers in those cases would have succeeded in either under settling the claim or refusing to pay it if the claimant had not been properly represented.

- Ends -

Association of Personal Injury Lawyers

- 3 Alder Court, Rennie Hogg Road, Nottingham, NG2 1RX
- T: 0115 958 0585 W: www.apil.org.uk E: mail@apil.org.uk
APPENDIX A

The Whiplash Report 2012

MYTH OR FACT?
A lot has been said about whiplash during recent years, much of which has been the subject of hyperbole, occasionally bordering on hysteria. Some would have us believe that compensation claims for whiplash injuries are the scourge of all those who have to pay car insurance premiums. Some people could be forgiven for thinking that anyone who makes a claim following a whiplash injury is perpetrating a fraud.

It is impossible to conduct rational debate in such a febrile atmosphere and yet rational debate on this subject, based on independent evidence, is long overdue. In a bid to separate the myths about whiplash from the truth, APIL commissioned an independent survey of more than 4,000 people from June to August 2012. Some may find the answers surprising.

Whiplash is often painted as an epidemic – a windfall for anyone whose car is hit from behind. The reality is very different. The survey results show that only around one in a hundred people suffered a whiplash injury last year, and almost 40 per cent of people who have suffered a whiplash injury have never claimed compensation for it.

While more than a third of people with whiplash injuries recovered within a month, around one in five had symptoms for more than a year.

Furthermore, the number of compensation claims for whiplash injuries is falling. According to the Government’s Compensation Recovery Unit, claims for whiplash have fallen by almost 24,000 in the past 12 months.

So, read on for a balanced view of the situation, along with some workable suggestions for ways of dealing with the real mischiefs of the system.

Deborah Evans
Chief Executive

1 The survey was undertaken by Canadean Consumer research, a leading independent market research company, via its online omnibus panel. In total, four waves of the survey went to Canadean’s online omnibus panel between June and August, with responses provided by separate nationally representative samples (reflecting the UK adult population above the age of 18).
Executive Summary

— Whiplash is not an epidemic. Only around one person in a hundred suffered a whiplash injury in the past year
— Whiplash claims have fallen by almost 24,000 in the past twelve months
— One in five whiplash sufferers suffer symptoms for more than a year
— Almost 30 per cent of claims are encouraged by insurers
— Almost 90 per cent of sufferers are diagnosed by a medical professional
— 80 per cent of sufferers either report their symptoms accurately, or underplay their symptoms
— Almost 40 per cent of sufferers do not claim compensation
— 70 per cent of people would not want to pursue a whiplash claim without an independent solicitor

Whiplash is an epidemic

MYTH OR FACT?

Of 4,000 people surveyed, only around one in a hundred had suffered a whiplash injury in the last 12 months.

The Government’s Compensation Recovery Unit statistics on the number of whiplash-related claims show that claims fell by almost 24,000 in the past twelve months.

NUMBER OF WHIPLASH CLAIMS

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/12</td>
<td>547,605</td>
</tr>
<tr>
<td>2010/11</td>
<td>571,111</td>
</tr>
<tr>
<td>2009/10</td>
<td>518,563</td>
</tr>
<tr>
<td>2008/09</td>
<td>486,194</td>
</tr>
</tbody>
</table>

[Source] Compensation Recovery Unit (CRU), Department for Work and Pensions (DWP)
Britons have the weakest necks in Europe

MYTH OR FACT?

Road congestion
According to the World Bank, the UK has 79 per cent more vehicles per kilometre of road compared to the European Union average. Logic dictates that, if our roads are busier and our towns congested, low velocity accidents, with relatively minor injuries, are likely to be more prevalent than high-speed crashes causing catastrophic injuries and death.

Car design and construction
According to the Association of British Insurers, “vehicle bodies have become stiffer since the late 1980s, increasing crashworthiness in high speed rear-end crashes. This helps reduce the incidence of serious injuries, but may increase the incidence of whiplash, due to a higher relative transfer of energy in a crash at the same speed.”[2]

James Dalton, the ABI’s Assistant Director of Motor and Liability, reiterated this point when he said that: “in reducing death and serious injury, there has been an increase in more minor injuries such as whiplash.”[3]

The most recent Department for Transport road casualties figures (2010) indicate that “the proportion of car occupants with minor injuries was higher in the newest cars, suggesting less severe injuries for occupants of newer cars. For example the proportion of MAIS 1 injuries [minor injuries] was 34 per cent for occupants of cars aged 1-4 years, and 29 per cent for occupants of cars aged 10 years or older.”[4]

Seat belt legislation
A number of studies have found that the introduction of seat belt legislation in 1983 led to an increase in neck sprains and soft tissue injuries to the lower part of the neck. Galasko et al. (1993) stated that their results “confirm that there was an increase in all forms of neck sprain after the introduction of seat belts.”[5] Andrew Ritchie QC – in his book ‘Medical evidence in whiplash cases’ – is quick, however, to point out that “these figures are not a criticism of seat belts. It appears that by their introduction we have reduced head injuries, facial injuries and fatalities but paid the price in ‘whiplash injuries’.”[6]

[5] 'Medical Evidence in Whiplash Cases' Andrew Ritchie (Sweet & Maxwell, 1999) – paragraph 1-05, page 3
[6] 'Medical Evidence in Whiplash Cases' Andrew Ritchie (Sweet & Maxwell, 1999) – paragraph 1-05, page 3
Almost 40 per cent of respondents to the independent survey have not claimed compensation after suffering a whiplash injury.

Almost 75 per cent of those people who suffered a whiplash injury and whose symptoms lasted more than a year, brought a claim.

Just over half of those whose symptoms lasted a couple of weeks brought a claim.

33 per cent of people reported their symptoms accurately; 47 per cent of people said they made their symptoms seem better than they were, to the person making the diagnosis.

It is not surprising that people play down their symptoms – it is part of human nature to put up with low level pain, or to put a brave face on it.

——

In fact, the survey reveals that just under 30 per cent of all claims were encouraged by insurance companies.

A victim may be contacted by his own insurer or the insurer of the person who caused the injury, a practice which is increasing and which is causing growing concern. It is not in the interests of the wrongdoer’s insurer to take care of the needs of the claimant, and we hear too often about insurers making low offers to unrepresented claimants or making offers without reference to a medical report, all to settle claims quickly to avoid legal fees.

Almost a third of respondents decided to pursue the claim themselves.

Around 18 per cent were encouraged to pursue a claim by friends or relatives.

Around 21 per cent were encouraged to pursue a claim by a lawyer.

WHO, IF ANYONE, ENCOURAGED YOU TO MAKE A CLAIM FOR YOUR WHIPLASH INJURY?

- Friends — colleagues
- A claims management company (i.e. not a lawyer, for example the National Accident Helpline, etc.)
- A law firm/solicitor/barrister
- Trade union, or employer, representative
- Citizen’s advice bureau (or other local or free advice agency)
- The insurance company
- No-one encouraged me – I decided to pursue the claim myself
Nearly 90 per cent of respondents to the survey had their injury diagnosed by a medical professional.

Pain may not show on an x-ray. Soft tissue injuries are difficult to see. That does not mean pain doesn’t exist or that soft tissue injuries cannot be diagnosed. Close questioning of a patient by a medical professional will result in an accurate diagnosis: the speed of onset of pain; initial severity; the presence of arm pain or paraesthesia; whether the patient was aware the vehicle was about to be struck; whether the vehicle was stationary; whether the handbrake was on; whether the patient was wearing a seatbelt; the site of the pain; restriction of movement – all these factors can help a doctor make an accurate diagnosis. As well as a diagnosis, a medical professional will provide a prognosis. This will tell the victim how long full recovery will take, which is important when assessing a compensation claim. Lawyers rely on these expert opinions in pursuing their cases.

Many insurers don’t believe this medical evidence is important, and they make offers of compensation to victims before they have even seen any medical evidence about the injury.

The impact of this is two-fold
— An easy way to check if a claim is genuine is removed from the legal process.
— If a claim is genuine, the information needed to provide accurate, fair compensation to the injured person is missing. This can be especially devastating for people with long-term injuries who need proper compensation to help them put their lives back on track.

Whiplash is impossible to diagnose

Nearly 90 per cent of respondents to the survey had their injury diagnosed by a medical professional.

Pain may not show on an x-ray. Soft tissue injuries are difficult to see. That does not mean pain doesn’t exist or that soft tissue injuries cannot be diagnosed. Close questioning of a patient by a medical professional will result in an accurate diagnosis: the speed of onset of pain; initial severity; the presence of arm pain or paraesthesia; whether the patient was aware the vehicle was about to be struck; whether the vehicle was stationary; whether the handbrake was on; whether the patient was wearing a seatbelt; the site of the pain; restriction of movement – all these factors can help a doctor make an accurate diagnosis. As well as a diagnosis, a medical professional will provide a prognosis. This will tell the victim how long full recovery will take, which is important when assessing a compensation claim. Lawyers rely on these expert opinions in pursuing their cases.

Many insurers don’t believe this medical evidence is important, and they make offers of compensation to victims before they have even seen any medical evidence about the injury.

The impact of this is two-fold
— An easy way to check if a claim is genuine is removed from the legal process.
— If a claim is genuine, the information needed to provide accurate, fair compensation to the injured person is missing. This can be especially devastating for people with long-term injuries who need proper compensation to help them put their lives back on track.

90%

Case study

In spring 2011, John and Ann Cooper’s Renault Clio was struck from behind by a 4x4 at a roundabout. Ann was driving.

“That was on a Sunday morning,” said Ann (71). “By Sunday afternoon I couldn’t open my jaw, and I was in pain.”

Ann suffered 12 months of neck and lumbar spine pain and restricted mobility, as well as nine months of psychological symptoms in the form of fear of travel and gastrointestinal disorders (IBS) due to stress. She calls whiplash ‘the silent injury’.

The couple had been fit and active in their retirement. Ann took part in weekly yoga classes, was a keen hill walker, and regularly swam 40 lengths of her local swimming pool. It was not until 12 months after the crash that she was able to go back to the pool.

“I’ve always been active and an independent woman,” she said. “But all of a sudden I was reduced to this wreck.”

“I’m still not recovered, and I’m having to have more physiotherapy because I wake up in excruciating pain every day, but I’m about as good as I’m going to get. Hopefully it is not going to take too much of my life away now but it has taken me a good year to get to a point where I feel I can have a go at trying to live my old life again.”

“I’d even argue that a person who has internal, unseen injuries could suffer more than someone with something as obvious as a broken leg - just because it can’t be seen does not make it any less painful.”

The accident happened while the Coopers were queuing at a roundabout. Although it happened at a very low speed Ann believes this had no bearing on the couple’s injuries. “Instead of looking at speeds, whoever is looking into this should consider what is clearly happening to the people inside the car,” she said.

John recovered from his neck injuries, although he still suffers some memory loss, which is a recognised consequence of whiplash. He was an insurance assessor and clerk for a major insurance company until 1996. “I used to see whiplash claims often,” he said. “It’s only now I’ve seen what it does that I know it goes a lot deeper than I thought at the time.”
Most symptoms disappear after a few days

MYTH OR FACT?

The survey reported:
— One third of sufferers recovered within a month
— Three quarters of all sufferers were symptom-free within six months
— One in five people had symptoms for more than a year

DURATION OF WHIPLASH SYMPTOMS

<table>
<thead>
<tr>
<th>Duration</th>
<th>No. of People</th>
</tr>
</thead>
<tbody>
<tr>
<td>A couple of days</td>
<td>13%</td>
</tr>
<tr>
<td>A couple of weeks</td>
<td>25%</td>
</tr>
<tr>
<td>A couple of months</td>
<td>24%</td>
</tr>
<tr>
<td>About 6 months</td>
<td>13%</td>
</tr>
<tr>
<td>Nearly a year</td>
<td>5%</td>
</tr>
<tr>
<td>Over a year</td>
<td>20%</td>
</tr>
</tbody>
</table>

Attitudes towards fraud

Respondents were clear about what they perceived to be fraudulent behaviour – and it is not just people making claims for compensation who are in the frame:

— 90 per cent of people think claiming for an injury when you haven’t been injured is fraudulent
— 89 per cent of people think deliberately crashing your car in order to be able to make a claim for personal injury is fraudulent
— 78 per cent of people think that a car repair company which charges more, because an insurance company is paying the bill, is fraudulent
— 68 per cent of people think that an insurer who denies his client caused an injury, then admits it later on, is fraudulent
— 63 per cent think offering £1,000 compensation for an injury when the injury is actually worth considerably more, is fraudulent
— Half of respondents think offering compensation without a medical report is fraudulent.

Methodological note: These results are from omnibus waves 3 and 4. The question asked “Based on your understanding of fraud, indicate on a scale of 1 to 5 which of the following activities you consider to be fraudulent (with 1 being ‘not at all fraudulent’ and 5 being ‘completely fraudulent’).” The findings have been subsequently sub-divided into three distinct categories – answers between 1 and 2 were considered to be ‘not fraudulent’, people who answered 3 were considered to be ‘uncertain’, and answers between 4 and 5 were considered to be ‘fraudulent’.
Fraud: separating the wheat from the chaff

There is no room in the system for people who claim compensation when they have not been injured.

APIL has developed a ten-point plan (see opposite page) to help eliminate fraud in whiplash claims while ensuring the majority of people who are honest, like Mr and Mrs Cooper, are still able to make valid claims.

The plan calls for effort and commitment from all parties concerned, and is based on the need for proper evidence, the sharing of information about fraudsters and consistently ethical standards from all those involved in the process.

The removal of some of the checks and balances from the system (such as the requirement for a medical report before compensation is offered) does nothing to combat fraud or ensure an accurate settlement for the genuine claimant. Insurers also deal with claimants direct in many cases, and are quick to offer cash to settle, without seeking medical evidence. This is another practice which needs robust regulation to prevent abuse.

Claimant lawyers are gatekeepers against fraud and regularly turn people away if they suspect they are not being truthful. Lawyers have no interest in pursuing fraudulent claims and those who do face the very real risk of being struck off.

Eliminating fraud in whiplash claims

Apil calls for

[1] Free and prompt exchange of information between the Road Traffic Accident (RTA) claims portal and the Insurance Fraud Bureau to facilitate identification of fraudulent behaviour at the earliest possible opportunity.

[2] Claimants to be subject to a standard, written statement of truth which must be explained to them by their solicitors. A document to be signed by either the claimant or the solicitor to confirm that the claimant understands the commitment behind the statement of truth. Breach of the statement may amount to fraud and may make the claimant liable to prosecution.

[3] Insurers to be banned from making offers of compensation before a medical report has been seen: the medical report is a critical factor in ensuring a claim has merit and that accurate compensation is paid.

[4] The rules governing the conduct of solicitors, insurers and claims management companies to be amended and standardised to prevent offers of gifts or cash inducements being made to potential clients.

[5] Robust enforcement of the imminent ban on the sale of claimants’ personal details by the defendants’ insurers.

[6] Any party who instructs an expert to give the other party a list of the names of one or more experts he considers are suitable to instruct beforehand, to ensure the expert is accepted as credible by both sides.

[7] Development of guidance to assist medical experts to identify and understand whiplash claims. The guidance should be developed in conjunction with the relevant medical organisations.

[8] Photographic identification of the claimant to be required by the medical expert; if this cannot be produced, the omission will be included in the expert’s report.

[9] The claimant’s solicitor to organise access to relevant medical records where a medical expert is to be instructed.

[10] ‘Spam’ or ‘cold’ texting to be banned.
Injured people will be better off if they are dealt with by insurers direct

MYTH OR FACT?

Many people who are injured through no fault of their own are contacted directly either by their own insurers or the insurers of the people who have injured them. Their own insurers will usually refer them to solicitors to settle claims on their behalf. If a victim is contacted directly by the ‘at fault’ insurer, however, it will usually be an attempt to settle the claim without the involvement of an independent lawyer. This saves the insurer paying legal costs. But, as the injured person is highly unlikely to know how much compensation he is entitled to, this practice puts claimants at risk of having cases settled for less than they are worth.

In 2009 the Financial Services Authority (FSA) found that “on average 3rd parties were awarded 234.95% or £1,003.07 more through court proceedings than the initial rejected out-of-court offer from a [insurance] firm”.

In June 2010 the Association of British Insurers published a code of practice to offer protection to injured people who are dealt with directly by an insurer, without help from an independent lawyer.

A survey has now been conducted of APIL members’ last three cases. It did not ask questions only about whiplash, but about all road traffic claims. The figures clearly suggest that the ABI code is not working:

— The first offer from an insurer prior to a lawyer being involved is a fraction of the value of the claim, with the average offer being £4,359 (in addition, many insurers do not make a first offer as the claim is often denied completely)
— The involvement of a lawyer raises the average value of an offer to £27,092 – an increase of nearly £13,000
— The final settlement is, on average, £47,643, which is more than ten times the original offer.

If insurers continue to deal directly with people who have been injured by their own clients, and if people are to have any confidence in the justice system, it is critical that insurers are regulated robustly.

Compensation is about finding the right figure, not finding the lowest figure a claimant will accept.

The issue of trust

When someone is injured they need to know who they can trust. So our survey asked the question.

Our survey measured levels of trust across those professions which may come into contact with people involved in whiplash claims:

<table>
<thead>
<tr>
<th>Profession</th>
<th>Percentage Trusting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor</td>
<td>72%</td>
</tr>
<tr>
<td>Lawyer</td>
<td>39%</td>
</tr>
<tr>
<td>Insurer</td>
<td>21%</td>
</tr>
<tr>
<td>MP</td>
<td>13%</td>
</tr>
</tbody>
</table>

There is clearly work for all professions to do in raising trust in, and the reputation of, the compensation system. The answer is not to shut the door in the face of the injured person: it is to fight fraud head on, restore faith in the professions, and reduce the negligence which causes needless injury in the first place.

Note: These results are from omnibus waves 1 and 2. The question asked ‘on a scale of 1 to 10 how much do you trust the following people to look after your best interests [with 1 being ‘not at all’ and 10 being ‘completely’]. The findings have been subsequently sub-divided into three distinct categories – answers between 1 and 4 were considered to be ‘not trusted’, answers between 5 and 6 were considered to be ‘unsure’, answers between 7 and 10 were considered to be ‘trusted’.
The future

The way whiplash claims are dealt with in the legal system may be changing. The Government is considering pushing claims such as these into the small claims court, which is designed as a court where people represent themselves. Traditionally, it is used for settling disputes about faulty goods or services. Personal injury cases are different. They all require, at the very least, an ability to gather the right evidence and the ability to identify the value of the claim before a claim can be successful.

Our survey examined how people might be affected by these proposed changes:

Of the 4,000 people surveyed:

— 70 per cent who provided a definite answer would not know how much to claim for their whiplash injury
— Nearly two thirds of people (65 per cent) who gave a definite answer were not confident that an insurer would offer them the appropriate amount of compensation for their whiplash injury
— 70 per cent would not want to pursue a whiplash claim without a solicitor.

The small claims court is designed for ‘litigants in person’ – ordinary people unrepresented by a solicitor. Yet only 30 per cent of people said they would be likely to pursue a personal injury claim for whiplash in the small claims court on their own.

This is no surprise, as personal injury cases can be complex and difficult. Defendants, and the insurance companies which represent them, know exactly how to exploit the injured person who is usually a completely uninformed, and often intimidated, first-time user of the legal system. It is the duty of insurance companies to look after their shareholders. This is a classic David and Goliath situation.

So, most claimants would need the help of an independent solicitor. But the small claims court is the only court in which the injured person’s solicitor is not paid by the defendant, if the claimant wins his case. This means the solicitor has to be paid out of the claimant’s own pocket.

In addition to that, the injured person also has to pay court fees and he won’t be able to recover these if the case is lost, which is obviously more likely if he is unrepresented. This could mean an injured person risking hundreds of pounds if he has to take his case to a hearing. This is unjust and unfair and reflects badly on a society which purports to care for vulnerable people.

Conclusion

We have now, for the first time in years, a much clearer picture of whiplash claims and an insight into views about what constitutes fraudulent behaviour.

Whiplash is not an epidemic, and the vast majority of people are honest, with a great many even playing down their symptoms. Whiplash injuries are real and they can be life-changing.

Fraudulent claims waste money, bring the whole system into disrepute and must be eliminated.

Eliminating fraud while protecting honest claimants must be the goal of all concerned. Certainly, APIL can’t do this alone. But by working with other lawyers’ groups which share similar agendas, with the assistance of sensible policy-making by the Government, and the co-operation of the Association of British Insurers by releasing data, we can begin to move forward.

We need a universal commitment to working to reduce fraud in whiplash cases. If we can reduce the level of false claims significantly, or even eliminate them completely, it would save millions of pounds.

Eliminating fraud would save unnecessary expenditure by insurance companies which should contribute towards lower motor insurance premiums over time. It would remove the mistrust associated with whiplash claims and allow everyone to focus on the victim.

APIL will support any proposals which will eliminate fraud, but will stand firm against any proposals which put barriers in the way of obtaining compensation for people with genuine whiplash claims.

No-one wants to be in a car accident. No-one wants to have their life affected by pain, even in the short term. APIL’s goal is to ensure that everyone who suffers a genuine whiplash injury at the hands of another is properly compensated. Let’s build policy based on fact, rather than myth.

[8] In omnibus waves 1 and 2.
[9] People who answered ‘maybe’ or ‘don’t know’ were discounted.
Association of Personal Injury Lawyers
3 Alder Court
Rennie Hogg Road
Nottingham NG2 1RX

0115 958 0585
mail@apil.org.uk
www.apil.org.uk
@apil

Design
purplecircle.co.uk
Appendix B

APIL Survey question: Settlement offers (£) Please indicate the initial and highest offers made to your client both prior to, and with, legal representation.

1. Where whiplash was the ONLY injury being claimed for:

<table>
<thead>
<tr>
<th></th>
<th>Initial without Lawyer</th>
<th>Highest without Lawyer</th>
<th>Initial with Lawyer</th>
<th>Final settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>24</td>
<td>25</td>
<td>184</td>
<td>188</td>
</tr>
<tr>
<td>Mean</td>
<td>£1,064.58</td>
<td>£1,227.00</td>
<td>£1,966.31</td>
<td>£3,173.62</td>
</tr>
<tr>
<td>Median</td>
<td>£1,000.00</td>
<td>£1,000.00</td>
<td>£1,750.00</td>
<td>£2,875.50</td>
</tr>
<tr>
<td>Mode</td>
<td>£1,000.00</td>
<td>£1,000.00</td>
<td>£1,000.00</td>
<td>£3,000.00</td>
</tr>
</tbody>
</table>

2. Where whiplash was NOT the only injury being claimed for (whiplash +):

<table>
<thead>
<tr>
<th></th>
<th>Initial without Lawyer</th>
<th>Highest without Lawyer</th>
<th>Initial with Lawyer</th>
<th>Final settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>12</td>
<td>10</td>
<td>138</td>
<td>141</td>
</tr>
<tr>
<td>Mean</td>
<td>£1,570.83</td>
<td>£1,445.00</td>
<td>£2,510.39</td>
<td>£4,195.65</td>
</tr>
<tr>
<td>Median</td>
<td>£1,375.00</td>
<td>£1,375.00</td>
<td>£2,500.00</td>
<td>£3,500.00</td>
</tr>
<tr>
<td>Mode</td>
<td>£1,000.00</td>
<td>£1,000.00</td>
<td>£1,000.00</td>
<td>£5,000.00</td>
</tr>
</tbody>
</table>

Whiplash ONLY claims

The top table includes only figures for cases which are exclusively whiplash (i.e. no other personal injury was claimed for). The difference between the initial offer made without a lawyer compared to the final settlement (which would have involved a lawyer) is:

- Mean: 198%
- Median: 188%
- Mode: 200%

So for whiplash only claims the presence of lawyer meant that the final settlement was around 200% more than if the injured claimant had accepted the first offer made to them. It should also be emphasised that in many cases liability is denied completely (i.e. compensation will be zero), so this percentage difference is likely to be conservative.
Once a lawyer is involved, the amount of compensation awarded increases by about 60%:

- Mean: 61%
- Median: 64%
- Mode: 200%

Whiplash +

The bottom table includes only figures for cases which involve multiple injuries *including* whiplash (i.e. psychiatric problems could be claimed for). The difference between the initial offer made without a lawyer compared to the final settlement (which would have involved a lawyer) is:

- Mean: 167%
- Median: 155%
- Mode: 400%

So for claims where there were multiple injuries including whiplash the presence of lawyer meant that the final settlement was about 150% more than if the injured claimant had accepted the first offer made to them. Again, it should also be emphasised that in many cases liability is denied completely (i.e. compensation will be zero), so this percentage difference is likely to be conservative.

Once a lawyer is involved, the amount of compensation awarded increases by about 50%:

- Mean: 67%
- Median: 40%
- Mode: 400%

--

Glossary of Terms

N = The number of cases on which the figures are based on.

Mean = The mean (or average) is equal to the sum of all the values in the data set divided by the number of values in the data set (e.g. 1,1,2,3,4 = mean is 2.2)

Median = The median is the middle score for a set of data that has been arranged in order of magnitude (e.g. 1,1,2,3,4 = median is 2).

Mode = The mode is the most frequent score in our data set (e.g.1,1,2,3,4 = mode is 1).
APIL Survey question:

- Approximately what percentage of the RTA cases (between £1k and £5k) YOU deal with have whiplash as the ONLY personal injury being claimed for?
- Approximately what percentage of RTA cases YOU handle have an initial settlement offer of less than £5,000?

<table>
<thead>
<tr>
<th>Whiplash only</th>
<th>Settlement less than £5k</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 190</td>
<td>n = 190</td>
</tr>
<tr>
<td>None</td>
<td>10 5%</td>
</tr>
<tr>
<td>1 -10%</td>
<td>11 6%</td>
</tr>
<tr>
<td>11 - 20%</td>
<td>19 10%</td>
</tr>
<tr>
<td>21 - 30%</td>
<td>11 6%</td>
</tr>
<tr>
<td>31 - 40%</td>
<td>11 6%</td>
</tr>
<tr>
<td>41 - 50%</td>
<td>19 10%</td>
</tr>
<tr>
<td>51 - 60%</td>
<td>21 11%</td>
</tr>
<tr>
<td>61 - 70%</td>
<td>24 13%</td>
</tr>
<tr>
<td>71 - 80%</td>
<td>25 13%</td>
</tr>
<tr>
<td>81 - 90%</td>
<td>23 12%</td>
</tr>
<tr>
<td>91 - 99%</td>
<td>13 7%</td>
</tr>
<tr>
<td>All of them</td>
<td>3 2%</td>
</tr>
<tr>
<td>190</td>
<td>100%</td>
</tr>
</tbody>
</table>

The response to the question about the number of whiplash only claims which respondents handle shows a relatively even distribution. This would indicate that RTA claims between £1k and £5k are not solely for whiplash only injuries.

A third of respondents (33%) indicate that between 91 and 100 per cent of RTA cases they deal with have an initial settlement offer of less than £5k – this suggests that if the small claims court was raised to £5k, virtually all RTA personal injury claims would fall within its remit. Indeed nearly 60% of respondents indicate that over 81 per cent of their RTA cases have an initial offer of less than £5k.
APIL Survey question:

- At what stage did the case conclude?

<table>
<thead>
<tr>
<th>Stage Description</th>
<th>Whiplash ONLY</th>
<th>Whiplash +</th>
</tr>
</thead>
<tbody>
<tr>
<td>At what stage did the case conclude?</td>
<td>n = 185</td>
<td>n = 137</td>
</tr>
<tr>
<td>Pre issue - post-letter of claim / CNF</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>13%</td>
<td>5%</td>
</tr>
<tr>
<td>Pre issue - post-medical report</td>
<td>117</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>63%</td>
<td>70%</td>
</tr>
<tr>
<td>Issued - post issue / pre- allocation</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td>9%</td>
</tr>
<tr>
<td>Issued - post-allocation / pre-listing</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>12%</td>
</tr>
<tr>
<td>Issued - post-listing / pre-trial</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

The figures indicate that the vast majority of cases concluded after the defendants had received a medical report. Assuming these cases were to be dealt with under the small claims court procedure, the injured person would have to get their own medical report in the future. Without this medical report, it is debateable whether defendants would be incentivised to settle the case.
APIL Survey question:

- What areas of complexity were present within the case? (please tick ALL which apply)

<table>
<thead>
<tr>
<th>Area of Complexity</th>
<th>Whiplash ONLY</th>
<th>Whiplash +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete denial of liability by defendants</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Contributory negligence alleged</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Liability admitted after the protocol period</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>Claimant under a disability (a minor or patient claim)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Refusal to negotiate</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Facts in dispute</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>Pre-existing condition</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Ongoing medical condition as a result of this accident</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Fatal settlement</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Accident abroad</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Complex injury</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>More than one medical report needed</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>Forensic accountant report needed</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Complicated special damages (disputed special damages claims)</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>English not the claimant's first language</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>More than one accident</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Questions to the medical experts</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Defendant's own medical expert evidence</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multiple medical expert disciplines instructed at outset</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CPR Part 18 requests</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

The small claims court was designed for straightforward and simple cases. Yet personal injury claims up to £5k in value are not straightforward and simple. The figures above –
which relate to the cases provided by the respondents – indicate some of the complexities involved. The most prevalent complexity is that liability is only admitted after the protocol period, with a large number of claims also made more difficult by a refusal to negotiate on the part of the defendants. Connected to both of these issues is the fact that liability is often completely denied. For cases where there is more than a simple whiplash injury, there is often more than one medical report needed. Finally, as promoted by almost everyone within the litigation system, the need to arrange rehabilitation for the injured person means that these types of claim are more difficult than portrayed by the consultation.

Miles Burger
Head of Research, APIL
26 February 2013
Clinical guidelines for the physiotherapy management of

Whiplash Associated Disorder
Clinical guidelines for the physiotherapy management of
Whiplash Associated Disorder (WAD)

This document should be cited as follows:

This clinical guideline was endorsed by the Chartered Society of Physiotherapy in October 2004. The endorsement process has included review by relevant external experts as well as peer review. The rigour of the appraisal process can assure users of the guideline that the recommendations for practice are based on a systematic process of identifying the best available evidence, at the time of endorsement.

ISBN 1904400159

Review date: 2010
Contents

Acknowledgements 8
Executive Summary 9

1 Introduction 10
 1.1 Background ... 10
 1.2 Definition of WAD ... 10
 1.3 WAD in context ... 10
 1.4 Epidemiology ... 10
 1.5 Aims and objectives of the guidelines 11
 1.6 Target users of the guidelines 11
 1.7 Terminology ... 11
 1.8 Conflicts of interest .. 12

2 Methods 13
 2.1 Introduction ... 13
 2.1.1 Scope of the guidelines 13
 2.1.2 Role of the guidelines development group 13
 2.2 Formulating the clinical questions 14
 2.3 Searching for evidence ... 15
 2.3.1 Outline of search strategies 15
 2.3.2 Systematic reviews .. 16
 2.3.3 Inclusion criteria for studies 16
 2.3.4 Final update search 16
 2.4 Reviewing the evidence ... 17
 2.4.1 Assessment of methodological quality 17
 2.4.2 Levels of evidence 18
 2.5 Consensus development ... 19
 2.5.1 Choosing the method 19
 2.5.2 The Delphi technique 20
 2.5.3 Practical details of the Delphi Methods 20
 2.6 Developing recommendations for practice 21
 2.7 Grading the recommendations 21
 2.8 Referencing style .. 22
 2.9 Cost and safety of interventions 22
 2.10 AGREE instrument ... 22
3 Physiotherapy assessment and associated issues

3.1 Mechanisms of injury

3.2 Classification of WAD

3.3 Recovery
 3.3.1 Pain
 3.3.2 Quality of life
 3.3.3 Psychological factors
 3.3.4 Time taken to return to work
 3.3.5 The advice that should be given to people about recovery from WAD

3.4 Risk factors that may influence prognosis
 3.4.1 Circumstances at the time of injury
 3.4.2 Pre-existing factors affecting prognosis
 3.4.3 Post-injury factors influencing prognosis
 3.4.4 Psychosocial barriers to recovery
 3.4.5 Occupational barriers to recovery

3.5 Range of possible symptoms encountered
 3.5.1 Neck pain
 3.5.2 Headache
 3.5.3 Radiating pains to the head, shoulder, arms or interscapular area
 3.5.4 Generalised hypersensitivity
 3.5.5 Paraesthesia and muscle weakness
 3.5.6 Symptoms from the temporomandibular joint
 3.5.7 Visual disturbances
 3.5.8 Proprioceptive control of head and neck position
 3.5.9 Impaired cognitive function

3.6 Assessment and Examination
 3.6.1 Valid consent
 3.6.2 Access to physiotherapy services
 3.6.3 Subjective assessment
 3.6.4 Serious pathology associated with WAD
 3.6.5 The physical examination
 3.6.6 Defining the aims of physiotherapy treatment

3.7 Pharmacological pain relief
4 Physiotherapy interventions

4.1 Acute WAD (zero to two weeks after whiplash injury) .. 44
 4.1.1 The effect of soft collars .. 44
 4.1.2 The effect of other interventions to enhance the effect of rest and analgesia in reducing pain 45
 4.1.3 Early activity versus initial rest and soft collar 46
 4.1.4 Early manual mobilisation techniques versus initial rest and soft collar ... 46
 4.1.5 Early exercise and advice versus initial rest and soft collar 47
 4.1.6 Early physiotherapy programme versus initial rest and soft collar 48
 4.1.7 Early education and advice versus initial rest & other modalities 48
 4.1.8 Early electrotherapy versus use of neck collar 49

4.2 Sub acute WAD (after two weeks and up to 12 weeks after whiplash injury) 51
 4.2.1 Manipulation and manual mobilisation .. 51
 4.2.2 Adverse events from cervical manipulation 52
 4.2.3 Exercise therapy .. 52
 4.2.4 Multimodal/multidisciplinary packages and psychosocial approaches 53
 4.2.5 Acupuncture ... 53
 4.2.6 Education and/or advice ... 54
 4.2.7 Traction .. 54
 4.2.8 Physical agents (including electrotherapy) and other interventions 54

4.3 Chronic WAD (more than 12 weeks after whiplash injury) 56
 4.3.1 Manipulation and manual mobilisation .. 56
 4.3.2 Exercise therapy .. 58
 4.3.3 Physical agents (including electrotherapy) 59
 4.3.4 Acupuncture ... 59
 4.3.5 Multidisciplinary psychosocial rehabilitation 60

4.4 Education and advice for people with WAD ... 62

4.5 Promoting self efficacy ... 62
 4.5.1 Health care must be patient centred ... 62
 4.5.2 Communicating with patients and understanding their needs 63
 4.5.3 Clinicians should possess good education skills 63
 4.5.4 Patient empowerment and self-efficacy .. 64

5 Summary of the recommendations ... 65

6 Research recommendations ... 72
 6.1 Physiotherapy treatment modalities for people with WAD 72
 6.2 Service development, prioritising treatment and the natural history of WAD ... 72
 6.3 Education and advice for people with WAD .. 72
 6.4 Guideline implementation .. 73
7 Outcome measures relevant to the treatment of people with WAD 74

7.1 Pain ... 74
7.2 Function ... 74
7.3 Return to usual activities 74
7.4 A patient centred measure 75
7.5 Fear of movement .. 75
7.6 Quality of life ... 75
7.7 Patient satisfaction ... 75
7.8 Anxiety and depression ... 76
7.9 Self-efficacy .. 76
7.10 Delphi findings and GDG advice 76

8 Legal issues 77

9 Implementation 78

9.1 Background ... 78
9.2 Potential barriers and facilitators 78
9.3 Interpreting the implications of the guidelines' recommendations ... 80
9.4 The challenges of implementing the guidelines 80
9.5 Methods of dissemination and implementation of the WAD guidelines 81
9.6 Implementation/audit pack 81

10 Using the guidelines in clinical practice 82

10.1 Why reflect? .. 82
10.2 Using the WAD guidelines to help reflection 83
10.3 Using the reflective practice record sheet 84

11 Links with other guidelines 85

11.1 Guidelines for the use of radiological investigations 85
11.2 Other guidelines about WAD 85

12 Reviewing and piloting these guidelines 86

13 Procedure for updating these guidelines 88

14 References 89
15 Further reading

15.1 Textbooks recommended for assessing people with WAD . 100

Appendices

Appendix A: People involved in developing these guidelines 101
Appendix B: Search strategies for the effectiveness of physiotherapy interventions 103
Appendix C: Evidence tables of studies included in the evidence review 106
Appendix D: The Delphi questionnaire round one 142
Appendix E: The Delphi questionnaire round two 150
Appendix F: Analysis of physiotherapists who completed the Delphi questionnaires 161
Appendix G: Delphi results following round two (%) 163
Appendix H: Indications for x-rays, computed tomography and magnetic resonance imaging 170
Appendix I: The reviewers’ comments sheet 172
Appendix J: Reflective practice record for WAD 174
Appendix K: Glossary 175
Appendix L: References in alphabetical order 182

Tables

Table 2.1 The PEDro scale 17
Table 2.2 Levels of evidence 19
Table 2.3 Methods of reaching a consensus 19
Table 2.4 Definitions of agreement from the results of the Delphi questionnaire 21
Table 2.5 Grading guidelines recommendations 21
Table 3.1 Clinical classification of whiplash associated disorders 24
Table 9.1 Summary of the effectiveness of interventions to promote implementation 81
Table 12.1 Reviewers of this document 86
Table A.1 The Guidelines Development Group (GDG) 2003–2004 101
Table A.2 The Yorkshire Steering Group (1999) 102
Table A.3 Yorkshire Guidelines Development Group Members (1996) 102
Table C.1 Evidence table of the 12 RCTs relating to WAD included in the evidence review and one RCT relating to chronic neck pain 106
Table C.2 Evidence table of systematic reviews on non-specific neck pain 120
Table C.3 Evidence summary table of systematic reviews on whiplash 134

Figures

Figure 2.1 The guidelines development process 14
Figure 3.1 Bar chart illustrating prognosis for people with WAD in terms of pain 25
Figure 3.2 Line graph illustrating percentage of people experiencing neck pain over time 25
Figure 10.1 Overlap between reflective activities 82
Figure 10.2 Linking reflection to the WAD guidelines 83
Evidence Summaries

<table>
<thead>
<tr>
<th>Evidence summary</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The mechanisms of whiplash injury</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>The classification of WAD</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>The prognosis and natural history of WAD</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Risk factors at the time of injury</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Pre-existing risk factors</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Post-injury risk factors</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Psychosocial barriers to recovery from WAD (yellow flags)</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Occupational barriers to recovery (blue and black flags)</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>The symptoms of WAD</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Valid consent</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Prioritising entry to physiotherapy services: how to prioritise</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>Prioritising entry into physiotherapy services: who to prioritise</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>Subjective assessment</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>Serious pathology (red flags)</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>The physical examination</td>
<td>41</td>
</tr>
<tr>
<td>16</td>
<td>The general aims of treatment for people with WAD</td>
<td>41</td>
</tr>
<tr>
<td>17</td>
<td>Advising on pain relief for people with WAD</td>
<td>42</td>
</tr>
<tr>
<td>18</td>
<td>Soft collars</td>
<td>44</td>
</tr>
<tr>
<td>19</td>
<td>Other interventions to enhance the effect of rest and analgesia in reducing pain</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>Returning to normal activity</td>
<td>46</td>
</tr>
<tr>
<td>21</td>
<td>Manual mobilisation versus initial rest and a soft collar</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>Early exercise and advice versus initial rest and soft collar</td>
<td>48</td>
</tr>
<tr>
<td>23</td>
<td>Early physiotherapy programme versus initial rest and soft collar</td>
<td>48</td>
</tr>
<tr>
<td>24</td>
<td>Early education and advice versus initial rest and other modalities</td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td>Early electrotherapy versus use of neck collar</td>
<td>49</td>
</tr>
<tr>
<td>26</td>
<td>Manual therapy</td>
<td>51</td>
</tr>
<tr>
<td>27</td>
<td>Adverse effects from cervical manipulation</td>
<td>52</td>
</tr>
<tr>
<td>28</td>
<td>Exercise therapy</td>
<td>52</td>
</tr>
<tr>
<td>29</td>
<td>Multimodal/ multidisciplinary packages and psychosocial approaches</td>
<td>53</td>
</tr>
<tr>
<td>30</td>
<td>Acupuncture</td>
<td>53</td>
</tr>
<tr>
<td>31</td>
<td>Education and/or advice</td>
<td>54</td>
</tr>
<tr>
<td>32</td>
<td>Traction</td>
<td>54</td>
</tr>
<tr>
<td>33</td>
<td>Physical agents (sub-acute)</td>
<td>55</td>
</tr>
<tr>
<td>34</td>
<td>Manual therapy</td>
<td>57</td>
</tr>
<tr>
<td>35</td>
<td>Exercise therapy</td>
<td>59</td>
</tr>
<tr>
<td>36</td>
<td>Physical agents (chronic)</td>
<td>59</td>
</tr>
<tr>
<td>37</td>
<td>Acupuncture</td>
<td>60</td>
</tr>
<tr>
<td>38</td>
<td>Multidisciplinary psychosocial rehabilitation</td>
<td>60</td>
</tr>
<tr>
<td>39</td>
<td>Education and advice</td>
<td>62</td>
</tr>
</tbody>
</table>
Acknowledgements

The Guidelines Development Group (GDG) would like to acknowledge the following people who have contributed to the development of these guidelines:

The physiotherapists who completed the Delphi questionnaires and thus made it possible to reach consensus where there was an absence of high quality research evidence.

All those involved in the original Yorkshire project to develop a whiplash guideline in the late 1990s. Their work formed the basis for this document.

Dr. Vinette Cross, Senior Lecturer, School of Health Sciences, The University of Birmingham for section 10.

Dr Katherine Deane, Systematic Reviewer, CSP (August 2003–March 2004) for advice on Delphi methods and reviewing.

Dr. Nadine Foster, Senior Lecturer in therapies (pain management), primary care sciences research centre, Keele University for section 9.

Ralph Hammond, Professional Adviser, CSP for advice on section 7.

Dr. Sue Madden, Senior Lecturer, Oxford Brookes University for advice on Delphi methods.

Judy Mead, Head of Research and Clinical Effectiveness, CSP for supporting, managing and mentoring the CSP team throughout the guidelines development process and for contributing to the editing of the guidelines.

Andrea Peace, Library and Information Services Manager, CSP and her team for their input at all stages of the development of these guidelines.

Ceri Sedgley, Professional Adviser, CSP for her contribution to editing the guidelines.

Professor Julius Sim, Head of Physiotherapy Studies, Keele University for advice on Delphi methods including definitions of agreement.

Jackie Vokes, Professional Adviser, CSP for section 8.

The lay GDG member who used her experience of having WAD to describe her ‘journey’ from injury to living with WAD. Her contribution was invaluable in the production of these guidelines.

All the reviewers for their valuable comments.

Innumerable other staff at the CSP who advised and supported the team.
Executive Summary

These guidelines apply to people who have sustained a whiplash injury to their neck, aged 16 years and above. The ensuing bony and/or soft tissue injuries may lead to a variety of symptoms referred to as Whiplash Associated Disorder (WAD). Most commonly the injury will be the result of a motor vehicle collision or a sporting accident. The recommendations in these guidelines are intended to assist physiotherapists and patients in making decisions about physiotherapeutic options for interventions, following an individual's assessment.

In 2002 physiotherapists identified whiplash injury as a priority area for clinical guidelines. Following this, expert clinicians, researchers and a patient representative formed a Guidelines Development Group (GDG) to develop this document. The GDG’s central focus was to understand which physiotherapy interventions are most effective in assisting people with WAD to return to normal activity. A systematic review of the literature was carried out so that recommendations for practice could be based on relevant, high quality research evidence. However, there were significant gaps in the literature. A Delphi process was therefore used to generate consensus evidence from the physiotherapy community, in order to produce more complete and useful guidelines. The GDG examined and synthesised the available evidence, interpreting its relevance for practice and developing the recommendations presented in the guidelines. The guidelines were extensively reviewed prior to their publication.

Recommendations for practice

Physiotherapists and people with WAD should be aware that serious physical injury is rare and a good prognosis is likely. Recovery is improved by early return to normal pre-accident activities, exercise and a positive attitude. Once a serious injury has been excluded, over-medicalisation is detrimental.

In the acute stage (0–2 weeks after injury) active exercise, education and advice on self-management and return to normal activity as soon as possible can be recommended. Manual mobilisation, soft tissue techniques, education about the origin of pain, advice about coping strategies, relaxation and transcutaneous electrical nerve stimulation (TENS) may be effective. There is no evidence to support the use of soft collars, traction, infrared light, interferential therapy, ultrasound or laser treatment.

In the sub-acute stage (2–12 weeks after injury) there is evidence to support a multimodal approach that includes postural training, manual techniques and psychological support. Combined manipulation and mobilisation, muscle retraining including deep neck flexor activity, acupuncture, education, advice about coping strategies, TENS, massage and soft tissue techniques may contribute to pain reduction and improvement of function.

In the chronic stage (more than 12 weeks after injury) exercise therapy, manipulation and mobilisation (which may be combined) and multidisciplinary psychosocial packages may be effective. Trained health professionals, who are not necessarily psychologists, can give psychological support.

Recommendations for research

During the development of these guidelines, areas for future research have been identified, based on the current gaps in existing high quality research evidence, and the clinical importance of particular research questions. These include evaluating the effect of exercise and advice given to people with WAD and treatments commonly used by physiotherapists, such as manual mobilisation, manipulation, cognitive behavioural therapy and physical agents. The relative benefits of individual or combined use of the interventions needs to be examined further. Issues relating to service delivery, prioritising patients for treatment and the natural history of WAD also require further study.

Conclusion

These guidelines are a valuable tool for physiotherapists in clinical practice, for people with WAD and for those involved in the planning, funding and carrying out of research studies. The recommendations are based on the best available evidence at the time of publication. As new evidence becomes available this will need to be considered and the recommendations reviewed. A formal update of the guidelines is planned for 2010.
1

Introduction

1.1 Background

In 2002 the CSP consulted its membership on priority areas for clinical guidelines development and Whiplash Associated Disorder (WAD) was one of the top 3 priorities identified. Having chosen the topic the major considerations were sound guideline development methodology and working with people with WAD and specialist physiotherapists (Table 1 Appendix A). The project built on previous work carried out in Yorkshire as part of a project to develop a series of clinical guidelines (Table 2 Appendix A). In 1996 a group of over 20 physiotherapists in Yorkshire (Table 3 Appendix A) recognised the need for evidence-based guidelines for the assessment and management of people with WAD. Despite great commitment to developing the guidelines they were never endorsed by the CSP, largely because it proved impossible to carry out a full systematic review of the literature as a ‘spare time’ occupation. However in 2003 a group facilitated by the CSP, and including a full time systematic reviewer, set out to complete the guideline. Members of the original Yorkshire group continued to play an active part in developing this final document.

1.2 Definition of WAD

People with WAD present a variety of symptoms occurring as a result of bony or soft tissue injury caused by whiplash injury to the neck during:

- An acceleration-deceleration mechanism of energy transfer to the neck
- A rear end or side impact motor vehicle collision
- A sporting accident e.g. in diving or rugby.

(Adapted from Spitzer 1995)

1.3 WAD in context

WAD is a common injury that is treated in physiotherapy clinics in the United Kingdom and beyond. It is sometimes a disabling condition and it usually occurs during transport accidents and in sporting mishaps. It is characterised by a range of signs and symptoms and can present complex challenges to clinicians. The syndrome involves trauma to a multiplicity of tissues in the cervical spine and it can affect other areas of the vertebral column. WAD can be complicated by a range of psychosocial factors. The management of people with WAD is intellectually and clinically demanding, requiring high level clinical reasoning skills. The evidence base supporting the physiotherapeutic management of WAD is in the early stages of development, but it is growing. These guidelines are designed to support both physiotherapists and people with WAD in the effective management of the condition. In addition, the guidelines highlight gaps in knowledge and indicate important questions for future research.

1.4 Epidemiology

Insurance statistics from road traffic accidents suggest that current annual incidence of WAD in the UK is approximately 300,000 new cases per annum. Assuming a population of 59 million, the incidence of whiplash injuries is around 500 cases per 100,000 population per year. Incidence figures across the world are not always comparable because they are determined in different ways. However, insurance statistics suggest the incidence to be;
1.5 Aim and objectives of the guidelines

The aim of these guidelines is to describe a framework for the clinical practice of physiotherapy in relation to both people with acute and chronic WAD in the UK. Specific objectives were to develop guidelines that:

- Assess the quality of evidence available
- Make recommendations for future research
- Make recommendations based on the best available evidence
- Improve the quality of patient care by emphasising the best treatment options
- Are user friendly and practical
- Encourage physiotherapists to reflect on their practice
- Lead to a more consistent approach to treatment of people with WAD across the UK (although individual needs and preferences will vary)
- Are accessible for people with WAD
- Enable people with WAD to take a more active role in their treatment where they wish to do so.

1.6 Target users of the guidelines

The authors intend these guidelines to be of particular use to:

- People with WAD
- Physiotherapists of all grades working with people with WAD
- Other professionals involved in the treatment of WAD e.g. general practitioners, occupational therapists, psychologists and accident and emergency doctors
- Educational establishments, especially those with an interest in physiotherapy
- Patients and professionals living and working overseas with a personal or professional interest in WAD.

1.7 Terminology

The term ‘person with WAD’ has been used throughout this document on the advice of the lay GDG member. However, there are instances where the word ‘patient’ was more appropriate e.g. in discussing ‘patient satisfaction’, ‘patient centred care’, ‘patient empowerment’ or ‘patient preference’.

The terms ‘manipulation’ and ‘manual mobilisation’ have been used throughout the document in accordance with the definitions that can be found in the Glossary (Appendix J).
1.8 Conflicts of interest

None was declared.

GDG members are authors of papers and textbooks referred to in this guideline. This is a reflection that GDG members are experts in this field. In the first round of the Delphi process (section 2.5.3), participants were asked to list textbooks they would recommend to physiotherapists for details of assessing patients with WAD (Appendix D). This list was refined in the second round of Delphi (Appendix E) and can be found in this guideline in Section 15. GDG members did not, therefore, influence the choice of textbooks themselves.
2.1 Introduction

Guidelines are a series of systematically constructed statements devised to assist practitioners with clinical decisions. The process of guideline construction begins with the selection of a topic, in this case the physiotherapeutic management of WAD. The main question addressed in these guidelines is, which physiotherapy treatments are most effective for assisting people with WAD return to normal activity?

2.1.1 Scope of the guidelines

The agreed scope of this guideline was the patient journey from diagnosis to outcome, with the main emphasis on physiotherapy interventions. The scope includes people with acute and chronic WAD, physiotherapy management, issues and concerns of physiotherapists and people with WAD in the UK. It excludes children under 16 years, shaken baby syndrome.

The guidelines were developed for people with grade 0 to III WAD (section 3.2 table 3.1). However, people with grade IV WAD may present for physiotherapy assessment. For this reason signs of serious pathology (section 3.6.4) and indications for referral for x-ray, CT and MRI scan (section 3.6.5.8) are discussed in this document.

2.1.2 Role of the guidelines development group

The guidelines development group (GDG) included expert physiotherapy practitioners, a person with WAD and other relevant professionals (Appendix A Table 1). The core of the group were members of the 1999 Yorkshire GDG and experts involved in the 2001 literature search updates. They were joined by researchers and practitioners with a special interest in whiplash injury. The patient representative meant that user perspectives and priorities were high on the agenda. The group was facilitated by CSP officers, in particular, Jo Jordan, a systematic reviewer and Anne Jackson, who managed the project, designed the Delphi questionnaire and led the writing of these guidelines.

At the first formal meeting the clinical questions were defined by the GDG (section 2.2). To establish an up to date knowledge base for the GDG, a systematic review of the evidence for the most effective physiotherapy interventions for assisting people with WAD to return to normal activity (clinical question 10) was carried out. The group assessed the quality of the evidence and, where the evidence was incomplete, conducted a Delphi survey with the aim of reaching consensus. The evidence was therefore derived from:

- High quality research evidence where this was available
- Consensus opinion where the literature was incomplete or equivocal.

From the available evidence, the GDG formulated recommendations, which were tested and piloted. The completed guidelines were submitted to the CSP’s Clinical Guidelines Endorsement Panel (CGEP). This publication includes a detailed description of the development process. Implementation will be an active process involving people with WAD having access to these guidelines and sharing responsibility for their care.
2.2 Formulating the clinical questions

At the first meeting of the GDG (18th March 2003) the clinical questions to be addressed by the guidelines were developed. These questions are listed below and the section of the guidelines where they are addressed given in brackets. Question 10 deals with the physiotherapy interventions.

1. What is the definition of WAD? (section 1.2)
2. What is the epidemiology of WAD? (section 1.4)
3. What are the risk factors associated with WAD? (section 3.4)
4. What are the mechanisms of injury of WAD? (section 3.1)
5. How can WAD be classified most appropriately? (section 3.2)
6. What are the symptoms of WAD? (section 3.5)
7. What is the prognosis and natural history for WAD? (section 3.3)
8. How should people with WAD be examined and assessed? (section 3.6)
9. What are the current guidelines in terms of pain relief for WAD sufferers? (section 3.7)
10 Which physiotherapy interventions are most effective in assisting people with WAD to return to normal activity?
 - Acute WAD (zero to two weeks after whiplash injury) (section 4.1)
 - Sub acute WAD (after two weeks and up to 12 weeks after whiplash injury) (section 4.2)
 - Chronic WAD (more than 12 weeks after whiplash injury) (section 4.3)

11 Which outcome measures might be most effective for people with WAD? (section 7)

12 What are the areas surrounding litigation for physiotherapists? (section 8)

13 How can physiotherapists best educate and advise people and promote self-efficacy? (section 4.5)

14 How will the guidelines be implemented? (section 9)

15 How should we promote reflective practice amongst physiotherapists? (section 10)

16 What are the links with other guidelines? (section 11).

These questions were used to provide a framework for this document and a focus for the literature searches. Question 10 was determined to be the most important and the systematic search strategy below relates directly to this question. However a major aim was to produce a useful and practical tool for use in the physiotherapy management of people with WAD. Thus sections in these guidelines relating to clinical questions 1–9 and 11–15 contain useful background and adjunct material and put these guidelines in context. They cover the patient journey from injury, through physiotherapy assessment and onto measurement of outcome, the legal issues that may affect people with WAD, considerations of self-efficacy for people with WAD and reflective practice for physiotherapists. These sections were developed by members of the GDG, experts from outside the group and by using the results of the Delphi survey. Whilst it is recognised that these supporting sections are dealt with less systematically than is question 10, their inclusion was considered vital to producing practical and complete guidelines.

2.3 Searching for evidence

The Yorkshire Guidelines Group originally searched for literature in 1996. Further literature searches were carried out by researchers at the University of Brighton in January 2001, with updates in November 2001. Further update searches were carried out in July 2002 and February/March 2004 by the CSP’s systematic reviewer. The searches carried out from 2001 started from 1995, as the Quebec Task Force2 and other systematic reviews6,12-15 searched for literature before this date, and these were used as the main source of studies before 1995. See Appendix B for the keywords and databases searched.

2.3.1 Outline of search strategies

The literature searches were broad. Filters to narrow the searches to randomised controlled trials or cohort studies were not used; the aim was to pick up as much background material as possible to support other sections of the guidelines. Consequently the searches were sensitive rather than specific, yielding many irrelevant citations in an effort to capture all the literature.

A final update search was carried out just before the guidelines document was completed in February/March 2004 to ensure that no studies or important documents had been published since the last literature search. A CSP librarian in collaboration with the systematic reviewer carried out this search. The search strategies that were run on Medline, Embase, AMED, CINAHL, PEDro and The Cochrane Library are shown in Appendix B. Appendix B will facilitate the searches for the update of this document in 2010.

In addition to the electronic searches, reference lists of the publications already found were examined for further relevant studies. Experts on the physiotherapy management of whiplash injuries also suggested more studies and reviews not previously found.
2.3.2 Systematic reviews
Several systematic reviews were found on the effects of treatments for WAD (Table 3, Appendix C). After appraising the systematic reviews it was apparent that specific patient groups and interventions were not described in enough detail to enable the GDG to give the appropriate level of guidance to practising physiotherapists. Therefore the systematic reviews were used to assist in identifying the individual studies and these were then included as part of the evidence review.

Systematic reviews of the effects of interventions on mechanical neck pain, which may or may not have included people with whiplash injuries, were considered as evidence where no information was available for whiplash specifically (Table 2 Appendix C). Individual studies of people with neck pain were only included when there was no available evidence from systematic reviews on WAD, or where a study was published more recently and was therefore not included in the original systematic review.

2.3.3 Inclusion criteria for studies
The criteria for selecting studies were:

- Studies that included people with WAD (acceleration/deceleration injuries) and gave separate results for this group
- Studies that compared interventions carried out by physiotherapists with each other or with a control group receiving standard treatment, no treatment, or a placebo or sham procedure
- Randomised or controlled clinical trials have been reviewed where these are available
- Studies that included adult study participants only
- Where specific information for people with whiplash injuries was not available then systematic reviews and studies that included only people with neck (cervical spine) pain, and not people with neck and/or shoulder or back pain, were considered
- English language papers, as resources were not available for translation.

2.3.4 Final update search
The final update search was the most comprehensive search that was carried out and captured over a thousand citations. After sifting through the titles and abstracts, 16 references were found to be relevant to the therapy section of the guidelines (sections 4.1–4.3). 11 of the 16 studies and systematic reviews were discarded because they:

- Were discussion papers, letters or commentaries of studies
- Were already included in the review, either individually or as part of a systematic review
- Were not randomised controlled trials
- Included a report of methods used in a study, but included no results

Five studies matched the inclusion criteria and were obtained for further examination. Of these:

- In one paper, people with WAD were excluded from the study
- In one paper manipulation techniques were compared but the guidelines’ specific clinical questions were not addressed
- In one paper an intervention that is not commonly used by physiotherapists was investigated
- Two papers were updates of studies already included in the review section of the guidelines and the results have been added.
2.4 Reviewing the evidence

The references found were imported into bibliographic software (Reference Manager, EndNote) where possible and duplicates eliminated. The first stage of reviewing involved sifting through the EndNote database and identifying references that did not fit the inclusion criteria based on their titles alone. The next stage of elimination involved looking at the abstracts of the remaining references. The searches up to July 2002 yielded 1,016 unique references. After sifting through the references by title and abstract, 84 papers were obtained, and those which met the inclusion criteria were assessed in more detail.

From the 84 papers obtained, only 13 met all the inclusion criteria and were included in the evidence review.32-44 One of these papers37 was later excluded after discussion with the GDG as the intervention, ultra reiz current, was not thought by the expert group to be used by physiotherapists.

Data extraction forms for systematic reviews and studies were developed to enable pertinent information to be recorded and to assess the quality of the study or systematic review. A data extraction form was completed for each paper obtained and stored electronically.

Information extracted from the papers was entered into summary evidence tables describing briefly the patient groups, interventions and quality and giving the most relevant results of the studies included (Appendix C). The summaries of the evidence in sections 4.1–4.3 were then written, based on the evidence tables and in most cases without the need to go back to the original study reports. Elements of the study design and reporting that may have affected the reliability and accuracy of the results were highlighted and commented on in the text of the review and briefly in the summary tables.

2.4.1 Assessment of methodological quality

The randomised and controlled clinical trials were assessed for methodological quality using the same criteria as that used for the Physiotherapy Evidence Database (PEDro), see table 2.1.45 This scale is based on a quality assessment tool developed by Delphi consensus (The Delphi List) by Verhagen et al.46

<table>
<thead>
<tr>
<th>Table 2.1 The PEDro Scale45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>
The reviewer carried out a quality assessment of the included studies. Scores were compared with those on the PEDro website to minimise possible bias. For studies where the two scores differed, another member of the GDG was asked to assess the quality of the studies in question to settle the disagreement. The producers of PEDro were notified of any discrepancies between the scores allocated in this review and those in their database. Therefore, PEDro scores given for studies in the evidence review and the evidence tables in Appendix C, Table 1 are those allocated for these guidelines and may not be the same as the scores shown on the PEDro website. PEDro scores have been found to be reliable for use in systematic reviews.47

A decision was made by the GDG that studies receiving scores of five out of ten and above were judged as high quality and those with four out of ten or less were low quality. Of the 11 studies included in this evidence review, six32,33,35,38-40,42 were considered as high quality and five34,36,41,43,44 were low quality.

All factors in the PEDro scale are important features of a controlled clinical trial and items in the PEDro scale are given equal weight. However, some elements could potentially bias the results of the studies more than others.

The following factors were considered to be most significant to this review:

- Whether participants were randomised to groups
- If the outcome measurements had been carried out without knowledge of the group allocation
- The proportion of participants who withdrew from the study
- If an intention-to-treat analysis was used.

It is important to bear in mind that some of the items in the PEDro score may not be achievable in many physiotherapy clinical trials. In particular, blinding of therapists and patients is impossible in a large number of trials unless it is feasible for the control group to receive a placebo or sham procedure. Only one of the included studies was able to blind participants and therapists by using a pulsed electromagnetic therapy unit versus a dummy unit made by the manufacturer to look exactly the same.35 The remaining studies were not able to use blinding because of the nature of the interventions compared, and therefore could not achieve maximum scores regardless of the way in which the studies might have been conducted.

The PEDro scores were therefore used as a guide to the overall quality of the studies included in the review. However, other aspects of the included studies that are not included in the PEDro scale were also considered in drawing up guidelines for clinical practice, for example, the length of follow up in the study. An intervention might be more effective in the short-term, but could be equally as effective as another treatment after a longer time period.

2.4.2 Levels of evidence

An evidence summary (ES) is provided at the end of each section of the evidence review, with an indication of the level of the evidence summarised. The levels of evidence used (Table 2.2) are those recommended in the CSP Information Paper 'Guidance for Developing Clinical Guidelines'.44
Study design is therefore used to indicate the extent to which results are reliable and robust. However, in these guidelines, levels of evidence do not take account of possible methodological flaws that may jeopardise the reliability of the results. Therefore evidence derived from poor quality RCTs and from RCTs with serious methodological flaws was down graded by one level compared to evidence from good quality RCTs. Where evidence was found for non-specific neck pain (in the absence of evidence for whiplash injury), the level of evidence is given, but the GDG also sought consensus views using the Delphi process. Methodological quality issues, particularly those thought to have the most influence on results, were considered alongside the levels of evidence when the recommendations for clinical practice were written.

2.5 Consensus development

2.5.1 Choosing the method

At the first meeting of the GDG it was recognised that the literature relating to WAD would be incomplete and inconsistent. Four methods of reaching consensus were considered (Table 2.3).

Table 2.3 Methods of reaching a consensus (adapted from Heath Technology Assessment)

<table>
<thead>
<tr>
<th>Consensus Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal methods</td>
<td>The GDG could come to an informal consensus in an internal meeting</td>
</tr>
<tr>
<td>The Delphi technique</td>
<td>A wider reference group of experts would be selected and asked to complete a questionnaire to give their opinion on the points that needed agreement. More than one round of questionnaires could be used in an effort to move towards consensus</td>
</tr>
<tr>
<td>The Nominal Group Technique</td>
<td>Discussion within the group followed by voting in an iterative process leading to a group judgement</td>
</tr>
<tr>
<td>A Consensus Development Conference</td>
<td>A representative group is brought together to listen to the evidence before retiring to consider the questions and reach a judgement</td>
</tr>
</tbody>
</table>
It was unanimously agreed to use the Delphi technique where possible. Informal methods were not the first choice because they lack the scientific credibility that makes the process of reaching consensus transparent. Funds were not available to run a consensus development conference and it was agreed that it would be important to aim to include a wider group than would be included in a nominal group. However, where issues arose after the Delphi questionnaire was finalised the GDG was used as an expert consensus group, discussing the issue in question until they were able to agree a response/conclusion.

2.5.2 The Delphi technique

The Delphi technique was initially developed at the RAND Corporation during the 1950s and 1960s as a structured process for gathering knowledge from a panel of experts using a series of questionnaires with controlled feedback of opinion. Delphi was used to predict future trends but it has increasingly been used to gather research information on opinion about public health and educational issues. Delphi methods are designed to circumvent some of the disadvantages of traditional ‘expert panels’ as each Delphi panel member responds individually to the questionnaires. Thus there is no need for meetings, costs are reduced and group dynamics inhibiting less vocal participants are avoided. Anonymity is assured because panel members are never identified with their opinions and peer pressure or political awkwardness is avoided. For example, a panellist may have an opinion that is shared by few other panel members, but she or he is perfectly free to maintain that opinion, even when aware that the majority opinion differs. Delphi sees consensus as data, not as a goal. Though there have been critics of Delphi methods as a research tool, their criticisms have mostly been directed at assumptions of hard predictive value; Delphi studies are generally accepted as appropriate tools for seeking opinion.

2.5.3 Practical details of the Delphi Methods

Gaps and inconsistencies in the evidence were apparent once the review of the literature was complete; the GDG members highlighted gaps in background literature. From these the first round of the Delphi questionnaire (Appendix D) was drafted, revised and piloted before being distributed to physiotherapists in early September 2003. The majority of questions involved assessing a statement on a five point Likert scale. A total of 68 Delphi questionnaires were sent to a range of physiotherapists working at different grades and in different clinical settings (Appendix F) and two reminders were sent to non-responders. In total 39 (57%) were returned completed. In view of the length of the questionnaire (128 statements, three open questions and three questions relating to personal details) the response rate for a postal questionnaire was considered good.

Questionnaires were returned by early October 2003 and data were transferred manually to an Excel spreadsheet. Data were entered twice, the two spreadsheets compared and errors corrected. The open questions were analysed i.e. recommended textbooks for assessment of WAD, barriers to recovery and suggested outcome measures. This added 20 additional statements to the second round of the Delphi questionnaire which contained no open questions. The extent to which physiotherapists had agreed with each statement on the first round was calculated and displayed on the questionnaire in the second round (Appendix E).

The second round of the Delphi questionnaire was sent out in late October and returned by mid December 2003. Once again two reminders were sent and results were analysed as in the first round to give a final score for each question. Questionnaires were sent to the 39 physiotherapists who responded to the first round and 27 (69%) were returned.

There is no standard threshold for consensus. A decision from the GDG was therefore necessary to determine the definition of consensus for these guidelines. In previous health care studies consensus has been set at 51%, 66% and 75%. Having read the literature and consulted with experts in Delphi methods, the GDG met in March 2004 and agreed on the following definitions: majority view (over half of the participants in agreement), consensus (three-quarters or more in agreement) and unanimity (all in agreement).
Table 2.4 Definitions of agreement from the results of the Delphi questionnaire

<table>
<thead>
<tr>
<th>Percent of respondents</th>
<th>Definition of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Unanimity</td>
</tr>
<tr>
<td>75–99 %</td>
<td>Consensus</td>
</tr>
<tr>
<td>51–74%</td>
<td>Majority view</td>
</tr>
<tr>
<td>0–50%</td>
<td>No consensus</td>
</tr>
</tbody>
</table>

The percentages used to categorise the level of consensus agreement were derived by combining data for ‘strongly agree’ and ‘agree’, and again combining ‘strongly disagree’ and ‘disagree’ from the second Delphi round questionnaires, and calculating these as a percentage of the total data for that question. These percentage figures are set out in Appendix G and are used throughout sections three and four, where the results of the Delphi process are discussed.

2.6 Developing recommendations for practice

Guideline writing involves bridging the gap between theory and practice i.e. moving from the evidence (research, consensus and expert opinion) to the formulation of recommendations based on the interpretation of the evidence in relation to clinical practice. The GDG took account of this when they met to agree on the recommendations. There were three levels of interpretation as follows:

- A direct link between the Delphi results and the recommendations; the Delphi questions were designed for this purpose
- An interpretation of the research evidence on physiotherapy interventions, from which recommendations were derived (sections 4.1 to 4.3); the link was fairly clear where studies related to physiotherapy practice
- A logical link from the research evidence/expert opinion in the supporting sections (all sections except 4.1 to 4.3) to recommendations; the studies and literature used were often not directly related to physiotherapy and hence more interpretation was necessary to tease out relevant issues.

2.7 Grading the Recommendations

The recommendations for practice are derived from the literature and from the Delphi questionnaire. Each recommendation is graded according to the type of evidence on which it was based (Table 2.5).

Table 2.5 Grading guidelines recommendations (adapted from CSP)*

<table>
<thead>
<tr>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At least one randomised controlled trial of overall good quality and consistency addressing the specific recommendation (evidence levels Ia and Ib in Table 2.2)</td>
</tr>
<tr>
<td>B</td>
<td>Well-conducted clinical studies but no randomised clinical trials on the topic of the recommendation (evidence levels IIa, IIb and III in Table 2.2)</td>
</tr>
<tr>
<td>C</td>
<td>Evidence from Delphi methods or other expert committee reports. This indicates that directly applicable clinical studies of good quality are absent (evidence level IV in Table 2.2)</td>
</tr>
<tr>
<td>Good practice point</td>
<td>Recommended good practice based on the clinical experience of the GDG</td>
</tr>
</tbody>
</table>
Few grade A recommendations are made in this document because there have been few randomised controlled trials in this field. The result is heavy reliance on consensus evidence and hence many grade C recommendations. However some issues arose after the Delphi questionnaire had been finalised and these gaps were addressed by the GDG arriving at a consensus i.e. by informal methods. This led to the good practice points that are the least reliable of the recommendations. Guidelines development is an ongoing and iterative process and these issues will be considered for any future Delphi questionnaire for the next edition of this document planned for 2010.

The recommendations that follow in sections 4.1–4.3 are based on established methods and involved a systematic review of the literature and consensus seeking where evidence was incomplete or contradictory. Each recommendation is clearly graded to indicate the strength of evidence on which it is based. The recommendations relating to section 3 and sections 4.4, 4.5 provide background information and highlight links to other literature that are likely to be of use to physiotherapists and people with WAD. However, these were not subject to a full systematic review, as was carried out for sections 4.1–4.3.

2.8 Referencing style

The Vancouver referencing system is used throughout these guidelines i.e. references are numbered in the order that they appear in the text and listed in this order at the end of the guidelines (section 14). This method was chosen as it is a widely used and accepted method of referencing and so that lists of authors’ names do not interfere with the readability of the document. However, to ensure the references are accessible they are also presented alphabetically in Appendix M.

2.9 Cost and safety of interventions

Although the GDG intended to address the issues of cost and safety of interventions this was not possible due to the paucity of literature in these areas. Details of risks of treatments are given where information is available e.g. the adverse events from cervical manipulation in section 4.2.2.

2.10 AGREE instrument

The GDG referred regularly to the AGREE Instrument® during the production of these guidelines to ensure that a structured and rigorous methodology was followed.
Physiotherapy assessment and associated issues

3.1 Mechanisms of injury

In 1928 'whiplash' was first introduced as a term for an injury to the neck due to rapid acceleration-deceleration forces on the upper spine. This most commonly happens in a motor vehicle accident when a stationary vehicle is hit from the rear. Until recently it was thought that firstly the head and neck were forced into hyperextension, with horizontal translation as the head lagged behind the movement of the torso. Secondly, the head and neck overcame the resulting inertia and became hyperflexed. Thus tissues in the cervical spine were put under great stress as they were compressed or stretched, to cause injury.

However, a new theory, based upon biomechanical studies, has given a possible explanation of the forces acting on the spine. The theory, which is based on in vivo and in vitro whiplash simulations, accepts that the force arises from a rear impact but suggests that the C6 vertebrae initially rotates backward into extension before any upper cervical movement occurs. As C6 reaches maximum extension C5 is forced to extend. The result is an S-shaped curve with the lower cervical vertebrae in extension and the upper cervical spine in relative flexion. Alternatively, the mechanism may be bi-phasic with the S-shaped curve in the first phase leading to a second phase where all levels of the spine hyperextend, creating a C-shaped curve. The cervical spine is forced into these positions in less than 200ms. The result is that the most affected level of the spine is at C5/C6 with disc disruption, stretching of capsular ligaments and facet trauma. There is maximal elongation of the C6/C7 level and the vertebral artery during the S-shaped position. The S-shaped position causes shear movement at the upper cervical spine which may lead to upper cervical pain and headaches. It has been suggested that the cervical spine as a whole does not exceed its normal physiological limits although the lower cervical levels do exceed limits of segmental posterior rotation, resulting in the posterior articular processes impacting and anterior separation.

A recent study concluded that the lower cervical spine is at risk of extension injury in both the S and C phase but the upper cervical spine is at risk of extension injury at higher impact only. Flexion injury was found to be less likely.

Evidence Summary 1

The mechanisms of whiplash injury

- The mechanisms of injury may indicate the cervical level affected
- Mechanisms of injury are not yet fully understood, but theories are being developed

Recommendations (ES 1)

Physiotherapists should be aware of theories that are developing to explain the mechanism of whiplash injury in order that they can relate the site of injury to the person’s symptoms and plan their physiotherapy management.

Grade

B

3.2 Classification of WAD

The Quebec Classification and a new Swedish classification based on functional impairment and disability have both been considered as part of the guidelines development process. The Quebec Classification was unanimously chosen by the GDG as the most clinically useful tool for physiotherapists with its clear definition of minimal injury, more major problems and serious injury. However, Hartling et al suggested that grade II in the original Quebec Classification should be subdivided into II a and II b to distinguish between people with normal range of movement and those with limited range of movement. This is important because the latter group have greater risk of a poor prognosis.
Table 3.1 Clinical classification of whiplash associated disorders.

<table>
<thead>
<tr>
<th>WAD Grade</th>
<th>Clinical Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>No neck complaint</td>
</tr>
<tr>
<td></td>
<td>No physical sign(s)</td>
</tr>
<tr>
<td>I</td>
<td>Neck complaint of pain, stiffness or merely tenderness</td>
</tr>
<tr>
<td></td>
<td>No physical sign(s)</td>
</tr>
<tr>
<td>II</td>
<td>Neck complaint and musculoskeletal sign(s) *</td>
</tr>
<tr>
<td></td>
<td>A retrospective cohort study has suggested further classification of grade II WAD:</td>
</tr>
<tr>
<td></td>
<td>IIa point tenderness and normal range of movement</td>
</tr>
<tr>
<td></td>
<td>IIb point tenderness and limited range of movement</td>
</tr>
<tr>
<td></td>
<td>(greater risk of long term symptoms)</td>
</tr>
<tr>
<td>III</td>
<td>Neck complaint and neurological sign(s) * *</td>
</tr>
<tr>
<td>IV</td>
<td>Neck complaint and fracture or dislocation</td>
</tr>
<tr>
<td></td>
<td>* Musculoskeletal signs include decreased range of motion and point tenderness</td>
</tr>
<tr>
<td></td>
<td>* * Neurological signs include decreased or absent deep tendon reflexes, weakness and sensory deficits.</td>
</tr>
</tbody>
</table>

Evidence summary 2

The Quebec classification appears to be the most clinically useful system available for the classification of WAD. Level IV

Recommendations (ES 2)

The Quebec Task Force classification should be used by physiotherapists for WAD with grade II subdivided into IIa and IIb, in order to assist with diagnosis and prognosis. Grade Good practice point

3.3 Recovery

3.3.1 Pain

Several studies have considered the prevalence and prognosis for people with WAD in terms of pain. US insurance company data suggests that:

- A third of car occupants involved in an accident experience neck pain (33%)
- A third of these attend emergency health services (11%)
- A third of these consult their primary care practitioner (3%)
- A third of these consult more than once (1%)
- A third of these develop chronic WAD (0.33%).

This suggests that 1 in 300 people involved in a car crash develop chronic pain. These data are summarised in figure 3.1.
Data from US hospitals for people with WAD suggest that:
- 60% report that symptoms subside after one month and that they are pain free after three months
- 75% have recovered from symptoms after six months
- 85% have recovered after three years
- 15% continue to report symptoms after three years

This data also suggests that severe pain is reported by 4% of people with WAD after 3 years.
A proportion of people with WAD have or complain of symptoms for much longer than it takes their tissues to heal. 6–18% of people with WAD may have significant symptoms up to two years after injury.67,68 But the prognosis for people who consult with persistent symptoms at six months is reasonably optimistic. Analysis of studies with long term follow-up (3–10 years), suggests that of those with chronic symptoms (6 months duration):

- 40% are still likely to recover
- 44% are likely to report some residual symptoms (i.e. mild to moderate)
- 16% are likely to be left with severe symptoms.66,69

3.3.2 Quality of life

WAD may reduce quality of life. A long term study (n=104) using the Sickness Impact Profile demonstrated lower than average mood and function two and a half years after whiplash injury.70

3.3.3 Psychological factors

Anxiety and depression may be prevalent in people with WAD and may be more important in affecting cognitive function than physical factors or pain.71 Following up people with WAD (previously seen at two and 10 years post injury) at 15 years post-injury (n=81) ongoing depression and anxiety was observed.72

3.3.4 Time taken to return to work

Canadian insurance data suggests that for those with WAD the average time taken to return to work is roughly one month after injury.73 Irish health care records for those with chronic symptoms (greater than six months duration) suggest that on average people returned to work after nearly five months.74

3.3.5 The advice that should be given to people about recovery from WAD

Delphi findings indicate that it is good practice for physiotherapists to advise people with WAD that they are very likely to recover (unanimity 100%). Thus, in addition to the level III evidence that only a small proportion of people with WAD take longer than would be expected to recover, there is level IV evidence about the advice that should be given.

<table>
<thead>
<tr>
<th>Evidence Summary 3</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>The prognosis and natural history of WAD</td>
<td></td>
</tr>
<tr>
<td>• A small proportion of people with WAD take longer than would be expected to recover</td>
<td>III</td>
</tr>
<tr>
<td>• There is unanimity (100%) that it is good practice for physiotherapists to advise people with WAD that they are very likely to recover</td>
<td>IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations (ES 3)</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiotherapists should advise people with WAD that they are very likely to recover.</td>
<td>C</td>
</tr>
</tbody>
</table>

3.4 Risk factors that may influence prognosis

This section considers the risk factors associated with WAD that may influence recovery following a whiplash injury. Prognostic factors include circumstances at the time of injury, factors that were present before injury and post-injury factors.
3.4.1 Circumstances at the time of injury

This section is applied specifically to motor vehicle accidents but similar questions should be considered in the case of sporting accidents.

There is conflicting evidence about the effect of a rear end collision. Some studies suggest that there is a greater risk of WAD when people are involved in rear end collisions; for example a UK prospective study (n=1197) and a German retrospective study (n=1,096). Nevertheless a systematic review of 50 reports on 29 cohorts of people concludes that rear end collision does not lead to a poor prognosis.

Headrests should be correctly positioned i.e. level with the top of the head and close to the back of the head (no greater than 5 cm gap) if they are to reduce the incidence of neck trauma. A specially designed seat to reduce loading on individual areas of the spine and absorb some of the impact has been developed.

There is conflicting evidence on whether the speed of a collision is a predisposing factor for WAD. It seems logical that increased speed of impact should increase the risk of WAD, although a German study of computerised biomechanical analysis (n=1,096) of drivers involved in litigation indicates that low impact speeds (up to 20km/h) can result in WAD.

Low weight or relatively low weight vehicles may be a risk factor for WAD:
- A German study of computerised biomechanical analysis (n=1096) of drivers involved in litigation indicates that drivers of lighter cars are more likely to sustain a whiplash injury; low speeds only were studied (up to 20km/h)
- An Australian cohort study (n=246) collected data via telephone interviews and concluded that a heavy striking vehicle compared with the driver’s vehicle led to increased incidence of whiplash.

There is conflicting evidence on whether wearing a seat belt is a predisposing factor for WAD. Whilst the introduction of seatbelts has saved many from serious injury there is evidence that they may have increased the risk of WAD. A population based study in the Netherlands did not find the incidence of seat belt use increased between 1989 and 1995, yet there was an increase in neck sprain. This may have been due to an increased reporting of WAD, increased car usage, or increased number of vehicles on the roads.

Delphi findings suggest that the following indicate increased likelihood of severe symptoms:
- Poorly positioned headrest (consensus 88%)
- Looking to one side during a rear-end collision (85%)

Thus, in addition to level III evidence, there is some level IV evidence that specific circumstances at the time of injury may affect prognosis.

Evidence Summary 4

<table>
<thead>
<tr>
<th>Risk factors at the time of injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low relative weight of vehicle that the person is travelling in</td>
</tr>
<tr>
<td>Poorly positioned headrests</td>
</tr>
<tr>
<td>Rear end collisions when the person is looking to one side</td>
</tr>
</tbody>
</table>

3.4.2 Pre existing factors affecting prognosis

Pre-existing factors can indicate that a poor prognosis is likely following injury. Research suggests that pre-trauma neck ache is an indicator of a poor prognosis following whiplash:
- A prospective epidemiological study in Sweden (n=296)
- A prospective study in the UK (n=7,669)
- A retrospective study in Australia (n=246)
- A retrospective study in Lithuania (n=202)
There was also consensus (96%) that pre-trauma neck ache indicates that a poor prognosis is likely following whiplash injury (Delphi finding).

Research findings are inconsistent about whether a particular age group is more likely to experience a poor prognosis following whiplash. Nevertheless age has often been considered a risk factor.\(^2\)\(^,\)\(^3\)\(^,\)\(^6\)\(^,\)\(^7\)\(^,\)\(^8\)\(^,\)\(^9\)\(^,\)\(^3\)\(^0\)\(^,\)\(^3\)\(^1\)\(^,\)\(^3\)\(^2\)

There is evidence, from a systematic review of 50 papers reporting on 29 prospective cohort studies, that older age is not associated with adverse prognosis for recovery from WAD.\(^7\)\(^7\)

At the same time, retrospective epidemiological studies suggest that the highest incidence age groups may be:

- 20–24 year olds followed by 25–34 year olds\(^2\)
- 25–54 year old\(^8\)\(^0\)
- 25–29 year olds (a 25 year study of people attending the accident and emergency department of a Netherlands’ hospital n=694).\(^9\)\(^1\)

Furthermore, a prospective study of people with WAD attending an accident and emergency department in the UK (n=1,197) suggests that the highest incidence age group is:

- 40–49 year olds followed by 30–39 year olds.\(^7\)\(^5\)

The variation in results may be a result of the use of different research methodologies, national variations or different data collection settings i.e. hospital or insurance records.

Many epidemiological studies suggest that being female is a significant risk factor for developing symptoms of WAD.\(^2\)\(^,\)\(^7\)\(^5\)\(^,\)\(^8\)\(^5\)\(^,\)\(^8\)\(^5\)\(^,\)\(^9\)\(^2\)\(^–\)\(^9\)\(^4\)\(^0\) Despite this a systematic review of 50 studies reporting on 29 prospective cohort studies reported strong evidence that female gender did not affect prognosis for recovery from WAD.\(^7\)\(^7\) There was no consensus on this (Delphi finding).

There was consensus (93%) that pre-existing degenerative changes indicate that a poor prognosis is likely following whiplash injury (Delphi finding). There was a majority view (59%) that a history of pre-trauma headache indicates that a poor prognosis is likely following whiplash injury (Delphi finding).

There was consensus (85%) that a low level of job satisfaction indicates that a poor prognosis is likely following whiplash injury (Delphi finding).

To summarise the Delphi findings on the effect of pre-existing factors on WAD, the following indicate that a poor prognosis is likely:

- Pre-trauma neck ache (consensus 96%)
- Pre-existing degenerative changes (consensus 93%)
- Low level of job satisfaction (consensus 85%)
- Pre-trauma headaches (majority view 59%)

There was no agreement in the Delphi findings that people below 50 years old or females were likely to have a poor prognosis.

Thus in addition to the level III evidence, there is some level IV evidence that pre-existing factors may lead to a poor prognosis.

Evidence Summary 5

<table>
<thead>
<tr>
<th>Evidence Summary 5</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-existing risk factors may include</td>
<td></td>
</tr>
<tr>
<td>- Pre-trauma neck ache</td>
<td>III</td>
</tr>
<tr>
<td>- Pre-existing degenerative changes (consensus 93%)</td>
<td>IV</td>
</tr>
<tr>
<td>- Low level of job satisfaction (consensus 85%)</td>
<td>IV</td>
</tr>
<tr>
<td>- Pre-trauma headaches (majority view 59%)</td>
<td>IV</td>
</tr>
<tr>
<td>- Evidence is conflicting about whether age or gender is a risk factor</td>
<td>III</td>
</tr>
</tbody>
</table>
3.4.3 Post-injury factors influencing prognosis

A systematic review of prospective cohort studies (n=29) found strong evidence that high initial pain intensity tends to lead to a slower recovery of function.\(^7\)

Delphi findings indicate that the following post-injury factors suggest a poor prognosis is likely following WAD:

- Headache for more than six months following injury (consensus 96%)
- Neurological signs present after injury (consensus 93%)

Evidence Summary 6

<table>
<thead>
<tr>
<th>Post-injury risk factors</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>High initial pain intensity</td>
<td>III</td>
</tr>
<tr>
<td>Headache for more than six months following injury (consensus 96%)</td>
<td>IV</td>
</tr>
<tr>
<td>Neurological signs present after injury (consensus 93%)</td>
<td>IV</td>
</tr>
</tbody>
</table>

Recommendations

Risk factors

Information should be sought in order that risk factors can be identified at the assessment stage as they can adversely affect prognosis.

At the time of injury, the following factors indicate that a poorer prognosis is likely (ES 4)

- Relatively low weight of person’s vehicle compared with other vehicle involved B
- Poor headrest position (i.e. not level with the top of the head, not close to the back of the head) C
- Rear end collisions where the person is looking to one side. C

The following pre-existing factors indicate that a poorer prognosis is likely (ES 5)

- Pre-trauma neck ache B
- Pre-existing degenerative changes C
- Low level of job satisfaction C
- Pre-trauma headaches C

The following post-injury factors indicate that a poorer prognosis is likely (ES 6)

- High initial pain intensity B
- Headache for more than six months following injury C
- Neurological signs present after injury C

3.4.4 Psychosocial barriers to recovery

Pathology-based medical models assume a strong relationship exists between physical abnormality, pain and disability. However, research conducted with people who report chronic pain has shown that there is often only a weak association between these factors.\(^11\) In light of this, alternative theories have been proposed as a means of explaining why some people adjust relatively well to chronic pain whilst others do not. Studies suggest that adjustment to chronic pain is strongly related to psychosocial as well as biomedical factors.\(^95\)–\(^97\) Furthermore, psychosocial factors appear to be better predictors of work absence than either biomedical or ergonomic factors.\(^96\)–\(^100\)

This section considers what have been described as yellow flags i.e. the psychological and sociological barriers to recovery from WAD, and the stage at which these should be assessed. The New Zealand Acute Low Back Pain Guidelines identify a number of yellow flags associated with chronicity.\(^101\) Although the New Zealand guidelines do not relate specifically to whiplash or cervical spine injury, it is possible that many of the factors identified will also affect recovery in WAD. A number of these yellow flags are listed below. Sections 3.4.4.1 to 3.4.4.8 are based on the work of Waddell (1998)\(^102\) and
Kendall et al (1997)101 except where referenced to another author.

It is important that these factors be assessed, and where appropriate targeted for change, when treating people with WAD.

3.4.4.1 Attitudes and beliefs about pain

Examples of attitudes and beliefs about pain that can be considered psychosocial barriers to recovery:

- Belief that pain is harmful
- Belief that pain must be completely abolished before attempting to return to work or normal activity
- Belief that pain is uncontrollable
- Catastrophising (i.e. thinking the worst; misinterpreting bodily sensations).

3.4.4.2 Behaviours of people with WAD towards pain

Examples of behaviours towards pain that may signal an increased likelihood of psychosocial barriers:

- Use of extended rest
- Reduced activity level with significant withdrawal from activities of daily living
- Report of extremely high pain intensity e.g. around 10 on a 0–10 visual analogue scale.

3.4.4.3 Clinician behaviours

Examples of clinician reinforcing yellow flags:

- Health professional sanctioning disability; not providing interventions that will improve function
- Diagnostic language leading to catastrophising and fear (e.g. fear of long term damage)
- Dramatisation of WAD by health professional producing dependency on treatments, and continuation of passive treatment
- Expectation of a ‘techno-fix’ i.e. that the body can be ‘fixed’ like a machine.

3.4.4.4 Compensation issues

Examples of compensation issues that may have a negative impact on recovery:

- Lack of financial incentive to return to work
- History of extended time off work due to injury or other pain problem (e.g. more than 12 weeks).

Literature regarding the effect of litigation on WAD reaches a range of conclusions. A prospective study (n=39) suggested that the health status of people with WAD often improves with treatment despite pending litigation.102 In addition, a retrospective study (n=102) involving a two year follow up104 and another longitudinal study (n=100) indicate that settlement of compensation does not appear to be followed by any marked improvement in clinical state.104,105 Furthermore a systematic review of 50 reports on 29 prospective cohort studies reported strong evidence that compensation is not associated with an adverse prognosis.77 A systematic review of 13 cohort studies concluded that recovery was faster in countries where litigation is less common.106

In view of the range of conclusions drawn from the research findings, a question was posed as part of the Delphi process. Delphi findings indicate that unresolved legal issues suggest that a poor prognosis is likely following WAD (consensus 81\%). However, it was felt the research and Delphi evidence was sufficiently uncertain for only a tentative recommendation to be made.
3.4.4.5 Emotions of people with WAD that could hinder recovery

Examples of emotions influencing WAD are:

- Fear of increased pain with activity or work
- Depression, loss of sense of enjoyment
- Feeling useless and not needed
- Anxiety about and heightened awareness of body sensations
- More irritability than usual.

3.4.4.6 Post-traumatic stress reaction

A prospective study found people with whiplash injury (n=76) were psychologically distressed but that as symptoms subsided the stress was reduced. Those with moderate to severe symptoms at six months post-injury tended to have moderate post-traumatic stress reaction.\(^7\)

3.4.4.7 Family

Examples of family issues that may hinder recovery are:

- Over protective partner/spouse, emphasising fear of harm or encouraging catastrophising (usually well intentioned)
- Solicitous behaviour from spouse (e.g. taking over tasks).

3.4.4.8 Work

Examples of work factors are:

- Belief that work is harmful; that it will do damage or be dangerous
- Unsupportive or unhappy current work environment
- Job involves significant biomechanical demands such as lifting, manual handling of heavy items, driving, vibration.

Delphi findings indicate that the following may be barriers to recovery from WAD:

- High fear of pain and movement (fear that pain and/or movement leads to harm) \((\text{unanimity} \, 100\%)\)
- Low self-efficacy (lacking confidence in ability to undertake a particular activity \((\text{unanimity} \, 100\%)\))
- Severe anxiety \((\text{unanimity} \, 100\%)\)
- Evidence of severe depression \((\text{unanimity} \, 100\%)\)
- Low pain locus of control (believing that it is impossible to control the pain) \((\text{unanimity} \, 100\%)\)
- High use of passive coping strategies (withdrawal/passing on responsibility for pain controls to others) \((\text{unanimity} \, 100\%)\)
- Chronic widespread pain \((\text{consensus} \, 96\%)\)
- High tendency to catastrophise \((\text{consensus} \, 96\%)\)
- Problems in relationships with others \((\text{consensus} \, 92\%)\)
- A series of previously failed treatments \((\text{consensus} \, 92\%)\)
- Non compliance with treatment and advice \((\text{consensus} \, 88\%)\)
- Unrealistic expectations of treatment \((\text{consensus} \, 86\%)\)
- Inability to work because of the pain \((\text{consensus} \, 85\%)\)
- Negative expectations of treatment \((\text{consensus} \, 81\%)\)
• Poor understanding of the healing mechanism (consensus 80%)
• Failure of the physiotherapist to address an individual person’s needs (consensus 80%)
• Poor clinical reasoning by the physiotherapist (consensus 69%).

Delphi findings indicate that the barriers to recovery should be assessed at the following stages after injury:
- after 6 weeks and before 12 weeks (consensus 85%)
- at 12 weeks or more (consensus 82%)
- after 2 weeks and before 6 weeks (consensus 81%)
- less than 2 weeks after injury (majority view 56%).

Evidence Summary 7

Psychosocial barriers to recovery from WAD (yellow flags)

Psychosocial factors, as barriers to recovery, may be associated with attitudes and beliefs about pain, behaviours, compensation issues, clinician behaviours, emotions, family and work. IV

The following may be barriers to recovery from WAD:
- High fear of pain and movement (unanimity 100%) IV
- Low self-efficacy (unanimity 100%) IV
- Severe anxiety (unanimity 100%) IV
- Severe depression (unanimity 100%) IV
- Low pain locus of control (unanimity 100%) IV
- High use of passive coping strategies (unanimity 100%) IV
- Chronic widespread pain (consensus 96%) IV
- High tendency to catastrophise (consensus 96%) IV
- Problems in relationships with others (consensus 92%) IV
- A series of previously failed treatments (consensus 92%) IV
- Non-compliance with treatment and advice (consensus 88%) IV
- Unrealistic expectations of treatment (consensus 86%) IV
- Inability to work because of the pain (consensus 85%) IV
- Negative expectations of treatment (consensus 81%) IV
- Poor understanding of the healing mechanism (consensus 80%) IV
- Failure of the physiotherapist to meet an individual person’s needs (consensus 80%) IV
- Poor clinical reasoning by the physiotherapist (majority view 69%) IV

Compensation issues do not appear to affect prognosis.

People with moderate to severe symptoms at six months post-injury are likely to experience a moderate post-traumatic stress reaction.

Barriers to recovery should be considered:
- After 6 weeks and before 12 weeks (consensus 85%) IV
- At 12 weeks or more (consensus 82%) IV
- After 2 weeks and before 6 weeks (consensus 81%) IV
- Less than 2 weeks after injury (majority view 56%). IV
3.4.5 Occupational barriers to recovery

Recent work suggests that there are types of occupational risk factors, described as blue and black flags. These are:

- blue flags are perceived barriers to return to work e.g. perceived inadequate support from managers, perceived time pressures
- black flags are the actual barriers to return to work e.g. the benefit system or sickness policy make return to work a less desirable course of action.

A reference to blue and black flags is included for completeness. At the time of writing, the GDG did not feel that physiotherapists generally use blue and black flags in practice and these are not therefore discussed in detail.

Evidence Summary 8

Occupational barriers to recovery (blue and black flags) may include

- Perceptions of work e.g. high demand and low control, perceived time pressure
- Job context and working conditions

Recommendations

Psychosocial barriers to recovery (ES 7)

- Compensation issues may not be a barrier to recovery from WAD
- Physiotherapists should be aware of the wide range of psychosocial barriers to recovery:
 - high fear of pain and movement
 - low self-efficacy
 - severe anxiety
 - severe depression
 - low pain locus of control
 - high use of passive coping strategies
 - chronic widespread pain
 - high tendency to catastrophise
 - problems in relationships with others
 - a series of previously failed treatments
 - non-compliance with treatment and advice
 - unrealistic expectations of treatment
 - inability to work because of the pain
 - negative expectations of treatment
 - poor understanding of the healing mechanism
 - failure of the physiotherapist to meet an individual person’s needs
 - poor clinical reasoning by the physiotherapist

- Physiotherapists should assess for psychosocial barriers at all stages after injury

Occupational barriers to recovery (ES 8)

Physiotherapists should be aware that perception of work and job context and working conditions may be barriers to recovery.
3.5 Range of possible symptoms encountered with WAD

A wide range of symptoms are documented in association with WAD although many people with WAD will experience only neck, head and shoulder discomfort and are not affected by the more unusual symptoms.

3.5.1 Neck pain

Neck pain is the most commonly reported symptom of WAD. Furthermore specific segmental zygapophyseal joint blocks have demonstrated that the neck and surrounding tissues are the most common source of chronic pain for people with WAD. A prospective study (n=380) of people involved in a rear end motor vehicle accident found the most commonly reported symptom was neck pain, followed by headache, neck stiffness, low back pain, upper limb symptoms, dizziness, nausea and visual problems. Tinnitus, temporomandibular joint pain, paraesthesia and concentration or memory disturbance may also be experienced.

3.5.2 Headache

Headache is the second most common symptom, often in the sub-occipital region with referral to the temporal area. These areas are innervated from the upper cervical levels and it was found that 50% of people complaining of headaches had pain arising from the C2/C3 segmental level.

3.5.3 Radiating pains to the head, shoulder, arms or interscapular area

Radiating pains to the head, shoulder, arms or interscapular area are often reported at some time post-injury. These patterns of somatic referral do not necessarily indicate which structure is the primary source of the pain but rather suggest the segmental level mediating nocioception.

3.5.4 Generalised hypersensitivity

Studies of small groups of people with WAD from Denmark (n=11) and from Switzerland (n=27 and n=14) found that the people with WAD had generalised hypersensitivity, extending as far as the lower limbs, when compared with healthy volunteers. It was suggested that WAD might lead to spinal cord hyperexcitability causing exaggerated pain on peripheral stimulation.

3.5.5 Paraesthesia and muscle weakness

Paraesthesia and muscle weakness may be caused by cervical radiculopathy, thoracic outlet syndrome and spinal cord compression.

3.5.6 Symptoms from the temporomandibular joint

Symptoms from the temporomandibular joint have been reported in the literature related to WAD but a study carried out in Lithuania found only a 2.4% prevalence in 165 cases.

3.5.7 Visual disturbances

Visual disturbances are mentioned in the literature. The pathophysiological basis for these symptoms has not been clearly established although a sympathetic nervous system link is possible.

3.5.8 Proprioceptive control of head and neck position

Although one study (n=27) found proprioceptive control of head and neck position reduced in 62% of people after whiplash injury the sample size was too small to draw general conclusions.
3.5.9 Impaired cognitive function

Cognitive function may be impaired by WAD but there is some evidence that such symptoms may be as a result of chronic pain, chronic fatigue or depression.121

<table>
<thead>
<tr>
<th>Evidence Summary 9</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>The symptoms of WAD</td>
<td></td>
</tr>
<tr>
<td>Many people with WAD experience neck, head and shoulder discomfort. However, a wide range of other symptoms may also be experienced</td>
<td>III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations (ES 9 and section 3.5)</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiotherapists should be aware that the symptoms of WAD can include neck pain, headache, shoulder and arm pain, generalised hypersensitivity, paraesthesia and muscle weakness, temporomandibular joint pain and dysfunction, visual disturbance, impairment of the proprioceptive control of head and neck position and impaired cognitive function.</td>
<td>B</td>
</tr>
</tbody>
</table>

3.6 Assessment and examination

This section considers consent, entry into physiotherapy services, subjective assessment, serious pathology, psychological and occupational barriers to recovery, objective examination and the aims of physiotherapy intervention. The Delphi process sought consensus on textbooks that can provide a useful background to assessment. A list of these can be found in section 15.

3.6.1 Valid Consent

There is a legal and ethical principle that patients have a right to determine what happens to their bodies.122 When people volunteer their consent, physiotherapists should establish that permission has been given to proceed with examination and treatment, and this should be recorded. Health professionals who do not respect an individual’s autonomy may be disciplined by their employer and/or their professional organisation and sued through the civil courts. To give consent people must have the capacity to understand the nature, purpose and likely effects of treatment. They must be informed of substantial and relevant risks associated with proposed interventions. Physiotherapists should be familiar with the law on consent. They should follow CSP Core Standards 2005123 and any local organisational policy and may contact the CSP for advice where necessary.

Evidence from a Department of Health guide also indicates responsibility for consent.122

<table>
<thead>
<tr>
<th>Evidence Summary 10</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Consent</td>
<td></td>
</tr>
<tr>
<td>Valid consent must be sought prior to assessment and treatment</td>
<td>IV</td>
</tr>
</tbody>
</table>

3.6.2 Access to physiotherapy services

There is no single accepted way that people with WAD can access physiotherapy services. For this reason the Delphi questionnaire included a question seeking consensus firstly on how and secondly on who to prioritise into physiotherapy services.

Delphi findings indicate that, in the acute stage, entry to physiotherapy services is best prioritised by:

- A physiotherapist screening individual people (consensus 85%)
- A physiotherapist working in the accident and emergency department (consensus 78%)
- A physiotherapist assessing individual people by telephone (majority view 56%).
Evidence Summary 11
Entry into physiotherapy services in the acute stage should be prioritised by:
- A physiotherapist screening individual people (consensus 85%) IV
- A physiotherapist working in the accident and emergency department (consensus 78%) IV
- A physiotherapist assessing individual people by telephone (majority view 56%) IV

At the point of entry there is another important decision to make when managing a busy service and that is which patients should be prioritised to enter the physiotherapy service?
Delphi findings indicate that the following factors make an individual person a higher priority at the assessment/screening stage:
- A person’s activities of daily living are disrupted (consensus 96%)
- A person is off work (consensus 96%)
- The injury has occurred more recently (consensus 89%).

Evidence Summary 12
The following people with WAD should be prioritised into the physiotherapy services:
- Those whose activities of daily living are disrupted (consensus 96%) IV
- People off work (consensus 96%) IV
- Those whose injury occurred more recently (consensus 89%) IV

The GDG acknowledges that the questions relating to physiotherapy service provision might be expanded and improved in the future and that prioritisation must necessarily depend on local service provision.

3.6.3 Subjective assessment
Using their own clinical experience, the GDG developed this section through discussion and group consensus, to outline important issues at this stage of the assessment. It discusses understanding people’s symptoms, the history of their presenting condition, past medical history, education and advice needs and their expectations of treatment.

3.6.3.1 Symptoms
People with WAD may present with any of the following symptoms: pain, paraesthesia, anaesthesia, stiffness, reduced function, visual disturbances and impaired cognitive function (section 3.5).
Assessment of symptoms should include:
- Site, including possible areas of referred pain i.e. neck pain, headaches, pain radiating into the head, shoulder, upper limbs or intrascapular area and temporomandibular joint
- Quality, frequency, depth and intensity
- Behaviour of the symptoms including the aggravating and easing factors and the 24-hour pattern of the symptoms
- Severity and irritability
- Links between the symptoms.
3.6.3.2 History of present condition

History of present condition should include:

- The mechanism of injury including details of the accident i.e. the speed, direction of impact, weight of the vehicle, use of seatbelt and head rest position, head position
- The onset of all the symptoms. These may include neck pain, headaches, pain radiating into the head, shoulder, upper limbs or intrascapular area, parasthesia, muscle weakness, temporomandibular involvement, visual disturbances, and impaired cognitive function
- Investigations made and the results of these
- Treatments given and their outcomes.

3.6.3.3 Past medical history

Subjective assessment should include:

- General health including previous major operations or illnesses (e.g. diabetes or epilepsy)
- Drugs taken e.g. steroids, anti-coagulants.

Evidence Summary 13

Subjective assessment

Subjective assessment involves identifying people's symptoms, the history of their presenting condition and their past medical history

Level: IV

3.6.4 Serious pathology

3.6.4.1 Defining red flags

Red flags are defined as indicators of serious pathology. Unlike the red flag guidelines for low back pain, there are no published guidelines on red flags for whiplash or cervical spine injury. However there is some consensus on the signs and symptoms that should alert the clinician to the presence of potential serious pathology. The list below includes the range of signs and symptoms that should be treated as potential red flags. They have been divided into two categories i.e. those requiring immediate investigation via the nearest accident and emergency department and those that should be considered precautions to treatment.

3.6.4.2 Red flags

Symptoms needing urgent investigation if they develop after whiplash injury include:

- Bilateral paraesthesia in upper/lower limbs
- Gait disturbance e.g. tripping or coordination difficulty
- Spastic paresis
- Positive Lhermittes sign i.e. shooting pain or parasthesia into lower limbs or all four limbs with cervical flexion
- Hyperreflexia
- Nerve root signs at more than two adjacent levels
- Progressively worsening neurological signs e.g. motor weakness, areflexia and sensory loss
- Symptoms of upper cervical instability
- Non-mechanical pain which is unremitting and severe
3.6.4.3 Precautions

Symptoms that should be seen as precautions to treatment include:

- Positive stress tests of the cranio-vertebral joints \(^{127}\)
- Vertebral column malignancy or infection \(^{124-126,128}\) which may preclude manual therapy
- A past history of cancer, particularly prostate, breast, lung, kidney. \(^{124,125}\) The clinician should be aware of the possibility of bony metastases in these people
- Rheumatoid arthritis. Manipulation is precluded and also strong end of range techniques
- Long-term steroid use may have resulted in osteoporosis or soft tissue damage thus strong techniques are precluded
- Osteoporosis
- Systemically unwell generally, perhaps associated with significant weight loss for no apparent reason or fever \(^2,124,125\)
- Structural deformity which has not been investigated or is recent in onset since the whiplash injury \(^{124,125}\)
- Other conditions and syndromes associated with instability or hypermobility.

Evidence Summary 14

<table>
<thead>
<tr>
<th>Serious pathology (red flags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms needing urgent investigation: bilateral paraesthesia, gait disturbance, spastic paresis, positive Lhermite's sign, hyper reflexia, nerve root signs at more than two adjacent levels, progressively worsening neurological signs, symptoms of upper cervical instability, non-mechanical pain which is unremitting and severe</td>
</tr>
<tr>
<td>Symptoms that should be seen as precautions to treatment: positive stress tests of the cranio-vertebral joints, vertebral column malignancy or infection, a past history of cancer, rheumatoid arthritis, long-term steroid use, osteoporosis, systemically unwell generally, structural deformity, other conditions and syndromes associated with instability or hypermobility</td>
</tr>
</tbody>
</table>

3.6.5 The physical examination

Physiotherapists should use findings from an assessment to develop hypotheses about people’s condition and decide upon interventions that are likely to be effective, using their clinical reasoning skills. On subsequent visits people with WAD need to be reassessed to ensure that management and treatment plans can be altered as appropriate. The following is an outline of the physical examination and further details can be found in the recommended textbooks (section 15).

3.6.5.1 Observation

The following should be noted on observation:

- Posture
- Willingness to move head and neck
- Muscle bulk and tone
- Soft tissues
- Swelling
- Observed attitudes and feelings.

3.6.5.2 Movement

A comparative study \((n=203)\) found that WAD reduced range of neck movement to the extent that people could correctly be categorised as either asymptomatic or having WAD on the basis of primary and conjunct range of movement, age and gender. \(^{130}\) This emphasises the value of careful physical examination of movement at the assessment stage.
The physiotherapist should assess the following movements:

- Active movement of the cervical spine, thoracic spine and upper limbs
- Functional movements
- Quality of movement and range of movement
- The effect of movement on pain or other symptoms.

Physiotherapists may also assess:

- Passive physiological intervertebral movements (PPIVMs)
- Passive accessory intervertebral movements (PAIVMs)
- Combined and repeated movements with compression/over pressure
- Combined and repeated movements with and without compression or distraction.

3.6.5.3 Neurological tests

The integrity and mobility of the nervous system needs to be examined and tests should include:

- The integrity of the nervous system including testing myotomes, dermatomes and reflexes when indicated by the distribution of the symptoms
- Mobility tests may include passive neck flexion (PNF), upper limb tension tests (ULTT), passive knee bend, straight leg raise (SLR) and the slump test
- The plantar response should be examined to exclude an upper motor neurone lesion
- Tests for clonus, should be carried out to exclude an upper motor neurone lesion.

Response to the slump test in females (n=60) has been investigated. Those with neck pain following whiplash injury (n=20) were compared with asymptomatic women (n=40).\(^{131}\) The group with neck pain were more limited in range of knee extension and experienced a significant increase in cervical symptoms suggesting that a pathological change of the neural system may contribute to neck pain.

3.6.5.4 Muscle tests

Muscle tests should include the assessment of muscle strength, control and length, and isometric contraction. Physiotherapists should be aware of a study comparing people with WAD with asymptomatic volunteers. People with WAD (n=12) were found to use superficial neck flexors more than asymptomatic volunteers (n=12). A possible explanation is that the use of superficial flexors was compensating for poor motor control in the deep neck flexor muscles.\(^{132}\) This suggests that physiotherapy assessment for people with WAD should include assessment of dynamic control of posture and movement.

3.6.5.5 Proprioception

On assessment of proprioception people with WAD (n=11) demonstrated a deficit in their ability to reproduce a target position of the neck or to find a neutral position of the neck when compared with a control group of matched asymptomatic people (n=11). This suggests the importance of retraining proprioception after whiplash injury.\(^{133}\)

3.6.5.6 Palpation

Palpation should include the cervical spine, thoracic spine and may include the head, face, upper limbs as appropriate. Note should be taken of the following:

- Skin temperature
- Localised increased skin moisture
- Presence of oedema or effusion
- Mobility and feel of superficial tissue
Muscle spasm
Tenderness
Trigger points
Bony prominence
Factors that provoke or reduce pain.

Accessory movements may be included in the examination in order to identify and localise the symptomatic joint and adjacent joint motion.

3.6.5.7 Special tests

Special tests are recommended in specific circumstances as outlined below:

- **Vertebro basilar insufficiency.** Guidance has been produced in the UK as a joint venture between the Manipulation Association of Chartered Physiotherapists and the Society of Orthopaedic Medicine. This intends to provide an evidence-based approach to vertebral artery insufficiency testing prior to cervical manipulation. The guidance highlights signs and symptoms that should be considered in the light of present research. It stresses that a recent or past history of whiplash is a risk factor in vascular accidents following cervical manipulation. Previous damage to the blood vessel wall may predispose the artery to further damage when cervical manipulation is applied.

- **Thoracic outlet syndrome.** Various tests for this complex syndrome have been described and include the Allen Test, Adson’s manoeuvre and provocative elevation tests.

- **Upper cervical stability.** Results from the Delphi survey indicated a high level of consensus that physiotherapists should test for instability in the presence of certain signs (inability to support the head, dysphagia, tongue paraesthesia, a metallic taste in the mouth, facial or lip paraesthesia, bilateral limb paraesthesia, quadrilateral limb paraesthesia, nystagmus, gait disturbance). However, the GDG was concerned that this response was misleading and agreed unanimously that extreme caution should be taken when considering the use of tests for instability. The presence of the listed symptoms would suggest a need for referral for urgent medical investigation. Joint integrity testing should only be conducted by a specially trained physiotherapist.

3.6.5.8 Investigations

In the case of serious injury or suspected serious injury, people with WAD may need referral for investigations e.g. x-rays, CT or MRI scans. In this event, physiotherapists should take advice from experts in this field and imaging should be in accordance with guidelines produced by the Royal College of Radiologists (Appendix H).

However, for WAD injuries of grade 0 – III (section 3.2) studies indicate that neither X-ray nor MRI scan is capable of detecting injury. A Japanese prospective study compared X-rays of people with acute whiplash injury (n=488) and asymptomatic volunteers (n=495). There was no significant difference between the two groups in:

- Frequencies of non-lordotic neck posture
- Local angular kyphosis.

There was no significant association found between:

- Clinical symptoms and cervical curvature.

A prospective study compared the MRI scans of the cerebrum and cervical spine of people with whiplash (n=40) and asymptomatic volunteers (n=20). Scans were taken within two days of injury and six months later. No significant difference was found between the two groups in terms of brain and neck images.
Evidence Summary 15

The physical examination

- Recent or previous whiplash is a risk factor for vascular accidents when considering cervical manipulation or pre-manipulative testing

- For a minority (serious injury or suspected serious injury), the assessment process may involve referral for investigations e.g. X-rays, CT scans or MRI scans

- Physiotherapists should examine people with WAD through:
 - observation and palpation
 - testing of movement, neurological and muscular integrity
 - proprioceptive skills
 - relevant special tests

- Expert opinion suggests that the presence of the following: inability to support head, dysphagia, tongue paraesthesia, a metallic taste in the mouth, facial or lip paraesthesia, bilateral limb paraesthesia, quadrilateral limb paraesthesia, nystagmus or gait disturbance suggests a need for further medical investigation rather than physiotherapeutic tests for instability. Joint integrity tests should only be applied by a physiotherapist with specialist training in this area

3.6.6 Defining the aims of physiotherapy treatment

Clinical reasoning is a part of the assessment process and leads to the development of the aims of physiotherapy treatment. The Delphi questionnaire tackled this issue with a view to agreeing on some general aims of treatment. There was consensus that the aims of physiotherapy should be to relieve symptoms, improve function, facilitate empowerment and get the person back to normal activity/work.

Delphi findings indicate that the general aims of treatment for people with WAD are to:

- Improve function (unanimity 100%)
- Facilitate empowerment of the person with WAD (unanimity 100%)
- Get the person with WAD back to normal activity or work (unanimity 100%)
- Relieve symptoms (consensus 93%).

Evidence Summary 16

The general aims of treatment for people with WAD

- Improve function (unanimity 100%)
- Facilitate empowerment of the person with WAD (unanimity 100%)
- Get the person with WAD back to normal activity or work (unanimity 100%)
- Relieve symptoms (consensus 93%)

3.7 Pharmacological pain relief

There are no national guidelines on pharmacological pain relief for people with WAD.

A systematic review involving people with non-specific neck pain found insufficient evidence when investigating the effectiveness of simple analgesia (paracetamol, opioids) or non-steroidal anti-inflammatory drugs (NSAIDs).
Evidence-based guidelines produced by PRODIGY extrapolated information from research in other acute and chronic pain conditions. These recommend:

- Regular use of paracetamol in the first instance, particularly during the initial stage after injury when natural recovery is expected
- Progression to regular use of NSAIDs when paracetamol alone is inadequate and where there are no contraindications. NSAIDs are likely to offer short-term pain relief and there seems to be little difference between the different NSAIDs available.

There is, however, a difference in the risk of adverse events between different NSAIDs, with ibuprofen having the lowest and azapropazone the highest risk. The newer cyclo-oxygenase 2 (Cox-2) inhibitors are associated with less gastrointestinal toxicity than older NSAIDs, however they may also be associated with more serious thrombotic cardiovascular events. Readers should note that some Cox-2 inhibitors have been taken off the market because of their side effects. Those at risk of developing serious gastrointestinal adverse effects should also be given a gastroprotective agent with an NSAID. The PRODIGY guidelines should be referred to for an indication of those at risk and which gastroprotective agents are suitable. A combination of paracetamol and codeine may be needed if paracetamol or NSAIDs do not give adequate pain relief on their own. Separate prescriptions of the two drugs are preferred to help find the safest and most effective dose to match the person's requirements.

Physiotherapists must be aware of their own personal scope of practice and limit their advice and treatment to areas in which they can demonstrate their ability to work safely and competently.

Evidence Summary 17

Advising on pain relief for people with WAD

- Paracetamol is likely to be the best painkiller immediately after injury
- NSAIDs should be used if paracetamol is ineffective
- Combined paracetamol and codeine may be necessary where a person experiences a great deal of pain
- Possible side effects of drugs should always be considered
- Physiotherapists must advise within the scope of their practice.

Recommendations for the physiotherapy assessment and examination of people with WAD

Valid consent (ES 10)

Valid consent should be sought and recorded in line with national standards and guidance, and local organisational policy

Access to physiotherapy service (ES11, 12)

Physiotherapists should prioritise entry into the physiotherapy service by:

- Screening individual people
- Providing a physiotherapy service in an accident and emergency department
- Assessing individual people by telephone

Physiotherapists should prioritise people who:

- Find their activities of daily living disrupted as a result of WAD
- Are unable to work as a result of WAD
- Have a more recent injury

Subjective assessment (ES 13)

A thorough subjective assessment is essential to help plan subsequent examination and treatment.
Serious pathology (red flags) (ES 14)

- People with WAD must be screened for red flags
- People with bilateral paraesthesia, gait disturbance, spastic paresis, positive Lhermittes sign, hyper reflexia, nerve root signs at more than two adjacent levels, progressively worsening neurological signs, symptoms of upper cervical instability, non-mechanical pain which is unremitting and severe must be referred immediately to the nearest accident and emergency department
- People with positive stress tests of the cranio-vertebral joints, vertebral column malignancy or infection, a past history of cancer, rheumatoid arthritis, long-term steroid use, osteoporosis, systemically unwell generally, structural deformity, other conditions and syndromes associated with instability or hypermobility should be treated with caution

The physical examination (ES 15)

- Joint instability testing should only be conducted by a specially trained physiotherapist
- Cervical manipulation and pre-manipulative testing techniques should be avoided for people with WAD
- Physiotherapists need to know when special tests and investigations are indicated and how to carry out the tests or refer people appropriately
- People with WAD presenting with signs and symptoms of instability must immediately be referred for further investigation
- Inexperienced physiotherapists must know when to ask advice from senior staff

Defining the aims of physiotherapy treatment (ES 16)

Although treatment is tailored to individual needs, general aims of physiotherapy treatment should be to:

- Improve function
- Facilitate empowerment of the person with WAD
- Return the person to normal activity/work
- Relieve symptoms

Advising on pain relief (ES 17)

- Physiotherapists should refer to local guidelines for prescription of analgesia.
- Where guidelines do not exist physiotherapists and people with WAD should seek appropriate medical advice.
Physiotherapy interventions

This section considers which physiotherapy interventions are most effective in assisting people with WAD to return to normal activity and how and when physiotherapists should treat people with WAD. The evidence and recommendations in this section are based on a systematic review of the research as has been described earlier in sections 2.3. and 2.4. The evidence from individual randomised controlled trials (RCTs) of people with whiplash injuries was reviewed. For areas where no whiplash studies were available, systematic reviews and more recent RCTs of people with mechanical neck pain were included. The Delphi questionnaire was used where research evidence was incomplete. This section is broken into three discrete sections:

- Acute WAD (the first two weeks after whiplash injury)
- Subacute WAD (after two weeks and up to 12 weeks after whiplash injury)
- Chronic WAD (more than 12 weeks after whiplash injury).

This reflects the way in which the research evidence is presented in the literature.

Recommendations are made on the basis of the systematic review of the literature where evidence exists. Little high quality research is available on the physiotherapy treatment for people with WAD. As a result much of the evidence and some of the recommendations are addressed by considering the evidence in non-specific chronic neck pain and by using the results of the Delphi questionnaire.

4.1 Acute WAD (zero to two weeks after whiplash injury)

4.1.1 The effect of soft collars

One quasi-randomised clinical controlled trial (n=196) compared a soft collar worn as much as possible for the first two weeks after a whiplash injury with a control group. Both groups were advised to rest and take analgesia (NSAIDs) at the discretion of the treating physician and followed up after six weeks. The methodological quality of this study was poor (PEDro 3/10); people were not assigned randomly to groups, their medical record numbers were used by allocating odd numbers to the collar group and even numbers to the control group. Outcome measurement was not blinded. Of those originally allocated to the groups, 22% did not attend the follow up at six weeks and were not included in the analysis, suggesting that an intention-to-treat analysis was not used. The length of follow up was only six weeks, which is not long enough to give any indication of the long-term effects of using a cervical collar. The difference between the groups was not statistically significant for global perceived pain, with 85% of the collar and 80% of the control groups reporting a reduction in pain or no pain after six weeks, and 5% and 8% of the collar and control groups, respectively reporting worse pain.

In view of the poor quality of the evidence, a question about the use of soft collars was included in the Delphi questionnaire. Delphi findings indicate that soft collars should not be used to enhance the effect of rest and analgesia in reducing pain (majority view 74%).

Evidence Summary 18

Soft collars

- Combining a soft collar, rest and analgesia is equally effective as rest and analgesia (downgraded for poor quality)
 IIb
- Soft collars should not be used to enhance the effect of rest and analgesia in reducing pain (majority view 74%)
 IV
4.1.2 The effect of other interventions to enhance the effect of rest and analgesia in reducing pain

Delphi findings indicate that, in the acute stage, the following techniques should be used to enhance the effect of rest and analgesia in reducing pain:

- Active exercise (*unanimity 100%*)
- Advice about coping strategies (*unanimity 100%*)
- Education about the origin of pain (*consensus 96%*)
- An active exercise programme devised for each individual following assessment (*consensus 93%*)
- A general active exercise programme devised for people with WAD (*consensus 92%*)
- Soft tissue techniques (*majority view 59%*)
- TENS (*majority view 52%*)
- Relaxation (*majority view 52%*).

Delphi findings indicate that, in the acute stage, the following techniques should not be used to enhance the effect of rest and analgesia in reducing pain:

- Infrared light (*consensus 85%*)
- Traction (*consensus 76%*)
- Laser treatment (*majority view 65%*)
- Interferential therapy (*majority view 63%*)
- Ultrasound treatment (*majority view 63%*).

The Delphi findings neither support nor refute the use of manual mobilisation, massage or acupuncture.

In the absence of any research evidence, the evidence for and against interventions designed to enhance the effect of rest and analgesia in reducing pain is based on level IV Delphi findings.

Evidence Summary 19

Other interventions to enhance the effect of rest and analgesia in reducing pain

Interventions that enhance the effect of rest and analgesia in reducing pain:

- Active exercise (*unanimity 100%*)
- Advice about coping strategies (*unanimity 100%*)
- Education about the origin of pain (*consensus 96%*)
- An active exercise programme devised for each individual following assessment (*consensus 93%*)
- A general active exercise programme devised for people with WAD (*consensus 92%*)
- Soft tissue techniques (*majority view 59%*)
- TENS (*majority view 52%*)
- Relaxation (*majority view 52%*).

Interventions that do not enhance the effect of rest and analgesia in reducing pain:

- Infrared light (*consensus 85%*)
- Traction (*consensus 76%*)
- Laser treatment (*majority view 65%*)
- Interferential therapy (*majority view 63%*)
- Ultrasound treatment (*majority view 63%*)

There was no consensus about the use of manual mobilisation, massage or acupuncture.
4.1.3 Early activity versus initial rest and soft collar

One RCT of people who had sustained a whiplash injury (n=178) compared return to normal activities (‘act as usual’) without sick leave or use of a collar with 14 days sick leave and use of a soft cervical collar. This was a well-conducted RCT (PEDro 6/10), which had blind outcome assessment, but did not use intention-to-treat analysis. A visual analogue scale (VAS) was used to measure neck pain and headache before and at follow up. However no details of this measure were given. The overall improvement in neck pain VAS over six months was similar in the two groups, although the rest group improved more in the first six weeks than the ‘act as usual’ group, which improved more after the six-week follow up. There were no differences between the groups in relation to neck and shoulder movement immediately after treatment or at the six-month follow up. The person’s global perceived improvement was also similar after six months, with 21% of the ‘act as usual’ and 22% of the rest group reporting more symptoms, and less symptoms reported by 66% and 63% of the ‘act as usual’ and rest groups, respectively.

Evidence Summary 20

Returning to normal activity
- Returning to normal activities is as beneficial as rest and use of a neck collar in the first 2 weeks after a whiplash injury

4.1.4 Early manual mobilisation techniques versus initial rest and soft collar

Two RCTs compared the use of manual mobilisation techniques and exercise with rest in a soft collar for the first two or three weeks after injury.

In the RCT by Bonk et al, manual mobilisation was given three times in the first week and twice in each of the second and third weeks after injury. Unspecified exercises to increase mobility were carried out at each session by the person, as well as strengthening and isometric exercises. In the third week the active group was given interscapular muscle strengthening exercises and postural advice. All subjects (n=97) were followed up at one, two, three, six and 12 weeks. The methodological quality was good (PEDro 5/10). However, this RCT has serious flaws that may have biased the results, as outcome assessment was not blinded and no intention-to-treat analysis was used. All six of those who withdrew from the study were in the active group; one experienced neurological signs and the other five were removed because they were non-compliant with therapy, and these five have not been included in the analysis of the results. Neck pain in the active group improved much quicker than in the rest group; the difference in prevalence of neck pain in the two groups was statistically significant after six weeks (11% versus 62%, respectively). However by the 12 week follow up there was little difference in neck pain reported (2% versus 16%, respectively). No statistically significant differences were reported between the active and rest groups in relation to range of movement at six or 12 weeks.

In the other RCT, people in the active group were given unspecified home exercises every hour, within the limits of pain, between manual mobilisation sessions with the therapist. Manual mobilisation (Maitland) of repetitive and passive movements was carried out within the person’s tolerance. A blind assessor measured outcomes (n=61) after 4 and 8 weeks. This RCT was given a high score for methodological quality (PEDro 6/10). However, the trial is small and as no intention-to-treat analysis was used, the exclusion of ten people (five from each group) from the analysis due to incomplete data reduces the size and power of the study even further. Initial scores for pain and range of movement were different in the two groups. Statistically significant improvements from baseline were seen in pain scores in both groups at four weeks and in the active treatment group at eight weeks. There were also statistically significant improvements seen in cervical movement at four weeks in the active group and in both groups after eight weeks. Pain scores were significantly lower at four weeks in the active treatment group than in the rest group, and both pain scores and cervical movement had improved significantly more at eight weeks in the group receiving active therapy than in the rest group.

No evidence regarding the long-term benefit of early mobilisation for whiplash injuries is available; the follow up period of these studies was 8–12 weeks.
In view of the quality issues of these studies, a question was included in the Delphi process. Delphi findings indicate that, in the acute stage, early manual mobilisation is:

- More effective than rest and a soft collar in improving neck range of movement (consensus 81%)
- More effective than initial rest in improving function (consensus 81%).

Thus, in addition to the level IIa evidence, there is some level IV evidence that manual mobilisation may be more effective than initial rest and a soft collar in the acute stage.

Evidence Summary 21

Manual mobilisation versus initial rest and a soft collar
- Early manual mobilisation reduces levels of pain more than initial rest IIa (down-graded for poor quality)
- Early manual mobilisation is more effective than rest and a soft collar in improving neck range of movement (consensus 81%)
- Early manual mobilisation is more effective than initial rest in improving function (consensus 81%)

4.1.5 Early exercise and advice versus initial rest and soft collar

The two RCTs by Bonk et al.32 and Mealy et al.40 reviewed in the previous section show that unspecified exercises carried out with manual mobilisation by a therapist are more effective for reducing pain than rest in the initial 2 weeks after a whiplash injury.

Another RCT (n=97) by Rosenfeld et al.43 compared a McKenzie active exercise and posture protocol with a standard leaflet containing information on the injury and advice on posture and suitable activities. The early exercise group were instructed in performing hourly home exercises consisting of gentle, active, rotational movements of small-range and amplitude, ten times in both directions. The standard leaflet contained advice to rest and wear a soft collar for a few weeks before beginning active movement. The study compared the effects of starting these treatment protocols within 96 hours of the injury with waiting until 14 days after the injury to begin the treatments. During the wait the two delayed treatment groups were not prescribed any therapy, apart from any instructions they had received from the referring physician. Including these two extra groups in the study design meant that the group sizes were small (ranging from 21 to 23 people in each group).

The final update search revealed another paper by Rosenfeld et al.29 giving 3-year follow-up data for this RCT. The methods and results were reported more thoroughly in the follow-up paper than they had been in the original. With the details from the updated paper the methodological quality was classified as high (PEDro 7/10). Use of intention-to-treat was discussed; when a worst-case scenario was used no differences were seen between those on active and standard treatments. Without an intention-to-treat analysis the results of the study show a statistically significant greater reduction in pain for the two groups receiving the active exercise therapy than the groups who had the standard treatment (p<0.001). No differences were seen however in the mean change in range of movement between the two treatment protocols. Low pain scores of less than 10mm on a 100mm visual analogue scale were reported by 52% (11/21) of the early active exercise group and 30% (7/23) of the early standard therapy group, which is not a statistically significant difference. There was a combined effect of treatment and time factor on the reduction of pain (p=0.04) and improvement of cervical flexion (p=0.01). Active exercise was more effective when administered within 96 hours of the accident and standard therapy achieved better results when delayed for 2 weeks. After three years the difference between the active and the standard treatment in the change in pain intensity was still statistically significant. However, the combined effect of intervention and timing was not statistically significant at the three-year follow-up.
Evidence Summary 22

Early exercise and advice versus initial rest and soft collar

- There is greater reduction of pain at 6 months after early active exercise and postural advice consistent with McKenzie principles than an early standard advice leaflet. The level of evidence is Ib.
- There is no difference in range of movement after early active exercise and early standard advice given within 96 hours of a whiplash injury. The level of evidence is Ib.
- Active exercise has the greatest effect on pain reduction if administered within 96 hours of a whiplash injury occurring. The level of evidence is Ib.

4.1.6 Early physiotherapy programme versus initial rest and soft collar

One quasi-randomised study by Pennie & Agambar (n=135) allocated participants to either a standard treatment of two weeks rest in a neck collar (either soft collar or moulded thermoplastic polyethylene foam) and a taught unspecified programme of active neck exercises, or physiotherapy (traction and advice on posture and home exercises). The methodological quality of this study was poor (PEDro 3/10). It is impossible to tell from the report of this study if true randomisation took place or not. Random allocation has been made on the basis of the casualty number without any further detail given. Other serious flaws include gender and social class differences in the two groups, outcome assessment was not blind and no intention-to-treat analysis was used. The number of non-attenders was similar in both groups, with 13 from each group missing at their 6-8 week follow up, and four and three people missing from the collar and physiotherapy groups respectively, for the five months follow up. There was no statistically significant difference between the two groups in relation to reduction in neck pain, total movement or people's subjective assessment, with 98% (64/70) in the collar group and 97% (56/58) in the physiotherapy group reporting 'cured' or 'improved' symptoms 5 months after their accidents.

In view of the poor quality of the study, a question was included in the Delphi process. Delphi findings indicate that, in the first two weeks after injury:

- Early physiotherapy ‘as usual’ is more effective than initial rest followed by an exercise routine in improving function (majority view 52%).

Thus there is some level IV evidence that an early physiotherapy programme may be more effective than initial rest and a soft collar in the acute stage.

Evidence Summary 23

Early physiotherapy programme versus initial rest and soft collar

- Early physiotherapy ‘as usual’ is more effective than initial rest followed by an exercise routine in improving function (majority view 52%). The level of evidence is IV.

4.1.7 Early education and advice versus initial rest & other modalities

One RCT reported in two papers by McKinney et al. was a single-blind RCT that compared a tailored programme of outpatient physiotherapy, with advice on self-management, with a group advised to rest for two weeks before starting activities. Physiotherapy was devised, after the person was assessed, from resources available at the hospital, typically the programme included active exercises and manual mobilisation (McKenzie & Maitland principles), hot and cold applications, short-wave diathermy, hydrotherapy and traction. The advice group were also assessed by the physiotherapist and given advice on posture, unspecified active exercises (demonstrated), and appropriate use of painkillers, collars, heat sources and muscle relaxation. Everyone was seen within 48 hours of the accident and fitted with a soft foam collar and given analgesia (co-dydramol 1000mg 6-hourly). Enrolment to the rest group was stopped early, as the outcomes measured after two months in this group were significantly poorer than those in the other two groups, and it was felt that it was unethical to withhold instruction on effective mobilisation to this group of people. The methodological quality of this RCT was high (PEDro 6/10). No intention-to-treat analysis was used, however. 77 (31%) of the original sample (n=247) did not attend the two-month follow up and 80 (32%) were not available for
the two-year follow up. The non-attendees were distributed evenly between the three groups and did not differ significantly in age, sex or initial severity from those who attended the follow up. After two months there were no statistically significant differences between the physiotherapy and advice groups in either pain or range of movement. However, at the 2 year follow up 44% (24/54) of the physiotherapy group and 46% (12/26) of the rest group still had symptoms, whereas only 23% (11/48) of the advice group had persistent symptoms; this was a statistically significant difference.

Evidence Summary 24

<table>
<thead>
<tr>
<th>Early education and advice versus initial rest and other modalities</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Early physiotherapy advice on self-management is more effective in reducing persistent self-reported symptoms in the long term than an early programme of tailored physiotherapy</td>
<td>Ib</td>
</tr>
<tr>
<td>• Early physiotherapy advice on self-management was equally as effective as a tailored physiotherapy programme in the short term</td>
<td>Ib</td>
</tr>
</tbody>
</table>

4.1.8 Early electrotherapy versus use of neck collar

One RCT (n=40) by Foley-Nolan et al compared active pulsed electromagnetic therapy (PEMT) units with dummy units within 72 hours of an accident. Both the active and the dummy units were embedded in a collar. Participants were advised to wear the neck collars for 8 hours a day throughout the 12 week study period and to mobilise their necks hourly within pain-free range. NSAIDS were also prescribed and amount used recorded. After four weeks, nine study participants (45%) in the active and 12 (60%) in the dummy group were unhappy with their progress and were referred to a physiotherapist for individualised therapy twice a week for six weeks (typically included hot packs, pulsed wave diathermy, ultrasound & active repetitive movements). The results for these people were analysed according to an intention-to-treat analysis, i.e. in the group to which they had been randomly assigned. This may have affected the overall results as a large proportion of both groups received similar treatment programmes after four weeks in the study. The RCT achieved a high score for methodological quality (PEDro 9/10). The active group improved in terms of pain (after two weeks and four weeks) and this was statistically significant but it was not maintained (after 12 weeks). Significantly more people in the active PEMT group perceived their improvement as ‘moderately’ or ‘much better’ than those in the dummy group at four weeks (85% (17/20) vs. 35% (7/20), respectively; p=0.001). The difference was less after 12 weeks, 85% for the active PEMT group compared with 60% for the control group.

Evidence Summary 25

<table>
<thead>
<tr>
<th>Early electrotherapy versus use of neck collar</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Early PEMT administered in a neck collar reduced pain faster than a neck collar with no PEMT, but there was no difference in pain reduction at 12 weeks</td>
<td>Ib</td>
</tr>
<tr>
<td>• Perceived improvement was greater in the PEMT collar group than the collar with no PEMT group</td>
<td>Ib</td>
</tr>
</tbody>
</table>

In this clinical trial, specially made cervical collars containing PEMT units were worn for eight hours a day throughout the 12 weeks of the study. This is very different from the exposure to PEMT a person with WAD would normally have in a physiotherapy department in the UK. Despite the fact that the evidence supporting the use of PEMT was the result of a well-conducted RCT, the GDG did not consider the results are generalisable to people with WAD who receive conventional PEMT in the UK today. Therefore, after much discussion the GDG has decided that this evidence cannot be used as the basis of a recommendation on the effectiveness of the conventional use of PEMT.
Treatment recommendations for physiotherapy intervention for WAD in the acute stage (zero to two weeks after injury)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Soft collars</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>The use of soft collars is not recommended (ES 18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Manual mobilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Manual mobilisation should be considered for the reduction of neck pain in the initial stages (ES 21)</td>
</tr>
<tr>
<td>C</td>
<td>Manual mobilisation should be considered to increase neck range of movement (ES 21)</td>
</tr>
<tr>
<td>C</td>
<td>Manual mobilisation should be considered to improve function (ES 21)</td>
</tr>
<tr>
<td>C</td>
<td>Soft tissue techniques should be considered for the reduction of pain (ES 19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Exercise therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Active exercise should be used to reduce pain (ES 19 and 22)</td>
</tr>
<tr>
<td>A</td>
<td>Active exercise for pain reduction should be started within four days of injury (ES 22)</td>
</tr>
<tr>
<td>C</td>
<td>An active exercise programme devised for each individual following assessment should be considered for the reduction of pain (ES 19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Education and advice</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Advice on self-management should be provided, to reduce patients’ symptoms (ES 24)</td>
</tr>
<tr>
<td>A</td>
<td>Returning to normal activities as soon as possible should be encouraged (ES 20)</td>
</tr>
<tr>
<td>C</td>
<td>Providing education about the origin of the pain should be considered for reducing pain (ES 19)</td>
</tr>
<tr>
<td>C</td>
<td>Providing advice about coping strategies may be helpful for the reduction of pain (ES 19)</td>
</tr>
<tr>
<td>C</td>
<td>Relaxation should be considered for reducing pain (ES 19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Physical agents (including electrotherapy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>The use of TENS should be considered for reducing pain (ES 19)</td>
</tr>
<tr>
<td>C</td>
<td>The following are unlikely to be effective in reducing pain: (ES 19)</td>
</tr>
<tr>
<td></td>
<td>Traction</td>
</tr>
<tr>
<td></td>
<td>Infrared light</td>
</tr>
<tr>
<td></td>
<td>Interferential therapy</td>
</tr>
<tr>
<td></td>
<td>Ultrasound treatment</td>
</tr>
<tr>
<td></td>
<td>Laser treatment</td>
</tr>
<tr>
<td></td>
<td>There is insufficient evidence to support or refute the use of the following: (ES 19)</td>
</tr>
<tr>
<td></td>
<td>Massage</td>
</tr>
<tr>
<td></td>
<td>Acupuncture</td>
</tr>
<tr>
<td></td>
<td>PEMT</td>
</tr>
</tbody>
</table>

Good practice point
4.2 Sub acute WAD (after two weeks and up to 12 weeks after whiplash injury)

4.2.1 Manipulation and manual mobilisation

There were no studies found exploring the effects of manipulation in people with only whiplash injuries. However there was a systematic review of the literature, from 1966 to January 1998, on the effectiveness of manipulation and manual mobilisation in acute and chronic mechanical neck disorders including whiplash injuries. The review made the following conclusions from the RCTs and quasi-RCTs found:

- No benefit was found in using manipulation alone in a single session to decrease pain [two large RCTs], and there was insufficient evidence on the effectiveness of more than one session in reducing pain [four small RCTs].
- No difference was found in pain and function when manual mobilisation alone was compared with a control group [one small RCT], other modalities (ice, TENS) [one small RCT], acupuncture [one small RCT] or a single manipulation [two small RCTs].
- A combination of manipulation and manual mobilisation showed no more benefit in decreased pain than a control group, and there was insufficient evidence on the effectiveness of combined manipulation and manual mobilisation to improve function [one small RCT].

Another systematic review of the evidence on neck pain found two trials on manipulation of reasonable quality with positive outcomes. The review also found two trials that did not obtain high methodological quality scores, one with positive outcomes and the other with equivocal or negative outcomes for manipulation. Three manual mobilisation trials were found, all of which were lower methodological quality and further details were not reported. There was insufficient detail on specific interventions used to draw conclusions on the effectiveness of manipulation or manual mobilisation from this review.

However, Delphi findings indicate that, in the subacute stage:

- Combined manipulation and manual mobilisation reduces pain (majority view 52%)
- Combined manipulation and manual mobilisation improves function (majority view 52%)
- Manipulation alone does not reduce pain (majority view 55%).

Delphi findings are inconclusive on the following, that in the subacute stage:

- Manual mobilisation alone reduces pain
- Manual mobilisation is more effective than a combination of ice and TENS in reducing pain
- Manual mobilisation is more effective than acupuncture in reducing pain
- Manual mobilisation is more effective than a single manipulation in reducing pain.

Thus there is some level IV evidence that manual therapy may be of benefit at the subacute stage.

<table>
<thead>
<tr>
<th>Evidence Summary 26</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual therapy</td>
<td></td>
</tr>
<tr>
<td>Combined manipulation and manual mobilisation may reduce pain (majority view 52%)</td>
<td>IV</td>
</tr>
<tr>
<td>Combined manipulation and manual mobilisation may improve function (majority view 52%)</td>
<td>IV</td>
</tr>
</tbody>
</table>
4.2.2 Adverse events from cervical manipulation

There is some indication of the incidence of adverse events for people with mechanical neck pain. One systematic review found the risk of adverse events from cervical manipulation difficult to estimate accurately due to the poor quality of the literature.140 However, the review suggests the estimate of serious adverse events ranges from one in 20,000 to 5–10 in 10 million cervical manipulations. The risk of minor or moderate events, such as headache or nausea, was said to range from one in 3,020 to one in 7,550 cervical manipulations. In one of the studies risk of stroke from cervical manipulation (0.001%) was compared with the risk of death from gastrointestinal bleeding following use of NSAIDS (less than or equal to 0.04%).142

A more recent systematic review of prospective studies by Stevinson and Ernst estimated that minor, transient adverse effects occur in approximately half of all people receiving spinal manipulation.143 The most common serious adverse events from cervical spinal manipulation were vertebrobasilar accidents, particularly for those under 45 years of age. The most reliable estimate given was that ‘for every 100,000 people under 45 years receiving chiropractic treatment, approximately 1.3 cases of vertebrobasilar accidents attributable to that treatment would be observed within 1 week of manipulation’.

Results of the Delphi survey indicated a high level of consensus that, in the subacute stage, the risk of serious adverse events (eg vertebrobasilar accidents) from manipulation is low. However the GDG urges caution because whiplash has been identified as a risk factor in vascular accidents following cervical manipulation134 (section 3.6.5.7 and evidence summary 15).

Delphi findings indicate that, in the subacute stage:

- The risk of serious adverse events (eg vertebrobasilar accidents) from manipulation is low (consensus 93%)
- There is no agreement on whether minor or moderate adverse events (eg headache or nausea) occur in around half of all people receiving cervical manipulation.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Evidence Summary 27} & \textbf{Level} \\
\hline
\textbf{Adverse effects from cervical manipulation} & \\
\hline
- For mechanical neck pain, the risk of serious adverse events from cervical manipulation is low & III \\
- A history of whiplash injury is a risk factor for vascular accidents following cervical manipulation & IV \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Evidence Summary 28} & \textbf{Level} \\
\hline
\textbf{Exercise therapy} & \\
\hline
- There appears to be no additional benefit from including kinaesthetic exercise to a programme of functional improvement exercises. (down-graded for poor quality) & IIa \\
\hline
\end{tabular}
\end{table}

4.2.3 Exercise therapy

One RCT by Soderlund et al (n=53)44 compared regular treatment, consisting of three specified exercises three times a day to restore movement with the same regular treatment, plus another exercise to improve ‘kinaesthetic sensibility and coordination’. All participants also received advice on posture and staying active. The methodological quality of this RCT was low (PEDro 4/10), as outcome assessment was not blinded and no intention-to-treat analysis was used. A total of 13 people (20%) dropped out, roughly the same number from each group before the end of the study. There was also poor adherence to the exercises, with only 41% of all people completing the exercises for more than 5 days a week. The trial found only a small difference in improvement in pain level and range of movement in the group receiving the additional exercise compared with the regular exercise group, which was not statistically significant.

A systematic review144 of the evidence on exercise in mechanical neck disorders described the same RCT for whiplash, and included another that is reviewed later in the section on chronic whiplash. The other RCTs found in this review included people with chronic or recurrent neck pain and are also reviewed in a later section.
4.2.4 Multimodal/multidisciplinary packages and psychosocial approaches

An RCT by Provinciali et al compared the effect of a multimodal treatment (postural training, manual techniques and psychological support) with a treatment programme of physical agents alone (including TENS, PEMT and ultrasound). This RCT included 60 people within 60 days of a whiplash injury. The methodological quality was good (PEDro 6/10). Outcome assessment was blind and nobody was lost to follow up. After adjusting for baseline differences, the pain intensity was significantly less for those in the multimodal group than those given physical agents (1.9 vs. 4.8 on a 10-point visual analogue scale, p<0.0001). People's subjective assessment of the effectiveness of treatment they received was also significantly different in the two groups (2 for multimodal group vs. –1 in the physical agents group, on a scale from 3 [total recovery] to –3 [complete disability]). The average delay in returning to work was significantly less for the multimodal group than the physical agents group (38.4 days, SD 10.5 vs. 54.3 days, SD 18.4).

A systematic overview of the evidence found one systematic review and two more recent RCTs in people with chronic neck pain, which have been included in a later section, but none were found in people with sub acute neck pain.

One systematic review of multidisciplinary biopsychosocial rehabilitation in people with subacute low back pain, from which it may be possible to extrapolate to cervical neck pain was found. The only two relevant studies, both of low methodological quality, provide moderate evidence to show that multidisciplinary rehabilitation, which includes an occupational health element, helps get people back to work faster, reduces sick leave and lessens subjective functional impairment.

Evidence Summary 29
Multimodal/multidisciplinary packages and psychosocial approaches
- A multimodal programme (including postural training, manual technique and psychological support) is more effective for whiplash injuries than a programme of physical agents, as rated by participants. The programme reduces pain and speeds their return to work.

4.2.5 Acupuncture

No studies were found on the effects of acupuncture for people with acute whiplash. However one systematic review of acute and chronic non-specific neck pain investigated the effects of acupuncture. The review found eight studies of reasonable quality comparing acupuncture with a range of therapies and controls. Five of these studies gave negative results for acupuncture and only three achieved positive results. However results were conflicting and acupuncture was not superior to any one modality in any of the trials. The authors concluded that the evidence did not support the use of acupuncture in the treatment of neck pain.

Delphi findings indicate that, in the subacute stage, acupuncture is effective in reducing neck pain (majority view 52%)

Evidence Summary 30
Acupuncture
- Acupuncture may be effective in reducing neck pain (majority view 52%)
- For non-specific neck pain, there was conflicting evidence about whether acupuncture was effective in reducing neck pain
4.2.6 Education and/or advice

No RCTs were found, other than the trial by McKinney looking at early advice which has previously been described, on the effects of education and advice on whiplash injuries. Advice has been included in many of the RCTs but none study the effect of advice or education in isolation.

A Cochrane systematic review of people with non-specific neck pain identified three RCTs of patient education interventions. This review has been withdrawn from the Cochrane Library due to lack of recent updates. They found too few studies using any one educational intervention to make any conclusive statement on the benefits or risks of patient education.

Delphi findings indicate that, in the subacute stage:
- Education is effective in improving neck function (consensus 96%)
- Advice about coping strategies is effective in enabling people to return to normal activities (consensus 96%).

Evidence Summary 31

<table>
<thead>
<tr>
<th>Education and/or advice</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education is effective in improving neck function (consensus 96%)</td>
<td>IV</td>
</tr>
<tr>
<td>Advice about coping strategies is effective in enabling people to return to normal activities (consensus 96%)</td>
<td>IV</td>
</tr>
</tbody>
</table>

4.2.7 Traction

No studies that specifically investigated the use of traction on people with whiplash were identified. However one systematic review of people with non-specific neck pain found three RCTs of poor quality studying traction versus various interventions, including heat, mobilisation, exercise, analgesics, neck collar, and no treatment. Only one of the RCTs showed a positive result for traction. However, the review could not draw any conclusions from the RCTs included because the traction used was not standard across the studies and different additional therapies were used. Another systematic review (also withdrawn from the Cochrane Library due to lack of recent updates) found three RCTs that suggested that traction was ineffective, however there was insufficient power in the trials to make any conclusive judgements.

Delphi findings indicate that, in the subacute stage, traction is not effective in reducing neck pain (majority view 52%).

Evidence Summary 32

<table>
<thead>
<tr>
<th>Traction</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction is not effective in reducing neck pain (majority view 52%)</td>
<td>IV</td>
</tr>
</tbody>
</table>

4.2.8 Physical agents (including electrotherapy) and other interventions

A package of physical agents (TENS, PEMT and ultrasound) was compared with a multimodal treatment (postural training, manual techniques and psychological support) in an RCT described previously. The results of this RCT suggest that physical agents are not as effective as a multimodal approach in reducing pain and speeding return to work. People who received the multimodal programme also assessed the effectiveness of the intervention higher than those receiving the package of physical agents.

A systematic review of rehabilitation interventions found one RCT comparing TENS with use of a neck collar. It found no statistically significant difference in patient-assessed pain after a week or three months.

A Cochrane systematic review (withdrawn from Cochrane Library due to lack of recent updates) of physical modalities in people with mechanical neck disorders was found. The review had the following findings:
TENS: One RCT found no difference between TENS and a control treatment of collar, rest, education and analgesia.

Infrared light: One placebo-controlled trial found a statistically non-significant treatment effect for the use of infrared light, but there was insufficient power to draw a definite conclusion from this trial.

Laser: Three RCTs of laser therapy, when combined indicated that laser did not significantly reduce pain levels compared to the control treatment. However, there is insufficient power to make a conclusive statement about the ineffectiveness of laser therapy.

Delphi findings indicate that, in the subacute stage:

- Soft tissue techniques are effective in reducing neck pain (consensus 78%)
- Muscle retraining to include deep neck flexor activity is effective in improving function (consensus 78%)
- Massage is effective in reducing neck pain (majority view 65%)
- TENS is effective in reducing neck pain (majority view 59%).

Delphi findings indicate that, in the subacute stage, the following are not effective in reducing neck pain:

- Infrared light (majority view 63%)
- Interferential therapy (majority view 59%)
- Laser treatment (majority view 55%)
- Ultrasound treatment (majority view 52%)

Delphi findings are inconclusive on the benefits of phasic exercise in improving function and the benefits of using soft collars.

Evidence Summary 33

<table>
<thead>
<tr>
<th>Physical agents</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A package of physical agents was not as effective at reducing pain and reducing delays in returning to work as a multimodal programme</td>
<td>Ib</td>
</tr>
<tr>
<td>Soft tissue techniques may be effective in reducing neck pain (consensus 78%)</td>
<td>IV</td>
</tr>
<tr>
<td>Muscle retraining including deep neck flexor activity may be effective in improving function (consensus 78%)</td>
<td>IV</td>
</tr>
<tr>
<td>Massage and TENS may be effective in reducing neck pain:</td>
<td>IV</td>
</tr>
<tr>
<td>· massage (majority view 65%)</td>
<td></td>
</tr>
<tr>
<td>· TENS (majority view 59%)</td>
<td></td>
</tr>
<tr>
<td>The following physical agents are unlikely to be effective in reducing neck pain:</td>
<td>IV</td>
</tr>
<tr>
<td>· infrared light (majority view 63%)</td>
<td></td>
</tr>
<tr>
<td>· interferential therapy (majority view 59%)</td>
<td></td>
</tr>
<tr>
<td>· laser treatment (majority view 55%)</td>
<td></td>
</tr>
<tr>
<td>· ultrasound (majority view 52%)</td>
<td></td>
</tr>
</tbody>
</table>

For mechanical neck disorders:

- No difference was found between TENS and treatment with collar, rest, education and analgesia | Ia |
- Infrared light and laser treatment were both ineffective compared to placebo or control therapy, but there was insufficient power to make any definite conclusions | Ia |
Treatment recommendations for physiotherapy intervention for WAD in the sub acute stage (i.e. more than two weeks and up to 12 weeks after injury)

Grade

Manipulation and manual mobilisation
- Combined manipulation and manual mobilisation should be considered for reducing pain (ES 26) **C**
- Combined manipulation and manual mobilisation should be considered for improving function (ES 26) **C**
- The risk of serious adverse events from cervical manipulation may be increased after whiplash injury (ES 27) Good practice point

Exercise therapy
- There is unlikely to be any benefit in including kinaesthetic exercise in a programme of functional improvement exercise (ES 28) **B**
- Muscle retraining including deep neck flexor activity may be effective in improving function (ES 33) **C**

Multimodal packages
- A multimodal programme (including postural training, manual techniques and psychological support) should be used to reduce pain and speed return to work (ES 29) **A**

Acupuncture
- The use of acupuncture cannot be supported or refuted (ES 30) **C**

Education and advice
- Education should be considered for the improvement of neck function (ES 31) **C**
- Advice about coping strategies should be considered, to enable people to return to normal activities (ES 31) **C**

Physical agents (including electrotherapy)
The following treatments could be considered for the reduction of pain: (ES 33) **C**
- TENS
- Massage
- Soft tissue techniques

The following treatments are unlikely to reduce neck pain: **C**
- Traction (ES 32)
- Infrared light (ES 33)
- Interferential therapy (ES 33)
- Laser treatment (ES 33)
- Ultrasound (ES 33)

4.3 Chronic WAD (more than 12 weeks after whiplash injury)

4.3.1 Manipulation and manual mobilisation

There were no studies found which considered the effects of manipulation in people with chronic whiplash injuries. However, one systematic review, included previously for sub acute WAD on the effectiveness of manipulation and manual mobilisation in acute and chronic mechanical neck disorders, was relevant. The review drew the following conclusions from the RCTs and quasi-RCTs found:

- A single session of manipulation was not shown to decrease pain (2 large RCTs), and there was insufficient evidence regarding the effectiveness of more than one session of manipulation in reducing pain (4 small RCTs)
• No difference in functional improvement was found between the use of manipulation, high-technology exercise or combined low-technology exercise with manipulation. High-technology exercise and combined low-technology exercise with manipulation tended to improve long-term pain levels most. Patient satisfaction improved more with combined low-technology exercise with manipulation [one large RCT]. In these studies high-technology exercise made use of a machine that allowed isolated testing and exercise of the cervical extensors and rotators and low-technology exercise comprised cervical strengthening exercises using a simple pulley system for weight resistance.151

• No difference was found in pain and function when manual mobilisation alone was compared with a control group [one small RCT], other modalities (ice, TENS) [one small RCT], acupuncture [one small RCT] or a single manipulation [two small RCTs].

• A combination of manipulation and manual mobilisation showed no more benefit in decreasing pain than a control group, and there was insufficient evidence on the effectiveness of combined manipulation and manual mobilisation in improving function [one small RCT].

Two-year follow-up data27 was found in the update search for one of the RCTs in the systematic review.151 The conclusions did not change from the previous report, with people in both exercise groups reporting lower pain levels than the group that received spinal manipulation alone.

Another review of the literature152 on manipulation and mobilisation for treating chronic pain found the same RCTs as Gross et al.140 The authors of this review concluded that manipulation and mobilisation may or may not be effective for chronic neck pain.

In view of the research evidence not being specific to WAD and its inconclusive nature, questions were included in the Delphi process. Delphi findings indicate that, in the chronic stage, the following reduce pain:

• Manual mobilisation (consensus 78%)
• Combined manipulation and manual mobilisation (consensus 70%)
• Manipulation (consensus 59%).

Combined manipulation and manual mobilisation improves function (consensus 70%)

Manipulation and exercise is more effective than manipulation alone in:

• Improving function (consensus 89%)
• Reducing long term pain (consensus 85%)
• Patient satisfaction (majority view 74%).

Delphi findings were inconclusive on the relative benefits of the following in reducing pain:

• Manual mobilisation versus ice
• Manual mobilisation versus combined ice and TENS
• Manual mobilisation versus acupuncture
• Manual mobilisation versus a single manipulation.

<table>
<thead>
<tr>
<th>Evidence Summary 34</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual therapy</td>
<td></td>
</tr>
<tr>
<td>• Manual mobilisation may reduce pain (consensus 78%)</td>
<td>IV</td>
</tr>
<tr>
<td>• Combined manipulation and manual mobilisation may reduce pain (majority view 70%)</td>
<td>IV</td>
</tr>
<tr>
<td>• Manipulation may reduce pain (majority view 59%)</td>
<td>IV</td>
</tr>
<tr>
<td>• Combined manipulation and manual mobilisation may improve function (majority view 70%)</td>
<td>IV</td>
</tr>
<tr>
<td>• Manipulation and exercise may be more effective than manipulation alone in: improving function (consensus 89%)</td>
<td>IV</td>
</tr>
<tr>
<td>• reducing long term pain (consensus 85%)</td>
<td>IV</td>
</tr>
<tr>
<td>• patient satisfaction (majority view 74%)</td>
<td>IV</td>
</tr>
</tbody>
</table>
4.3.2 Exercise therapy

One RCT in people with chronic whiplash injuries by Fitz-Ritson compared standard exercises (stretching, isometric, isokinetic) with ‘phasic’ exercises, consisting of rapid eye-hand-neck-arm movements. Both groups of people also received unspecified chiropractic treatment. The methodological quality of this study was poor (PEDro 3/10). It was not possible to tell if the randomisation process was concealed sufficiently as it was reported that people drew their group allocation from a box, without further details. Other serious flaws were that prognostic factors, such as age, gender, and the number of previous accidents in the two groups were not similar at the start of the study and outcome assessment was not blind to the treatment received. The percentage improvement in total average scores using the Neck Disability Index was 7.4% for the standard exercises and 48.3% for the ‘phasic’ exercise group after the eight weeks of treatment. These were both significantly different from baseline scores. This study did not directly compare the results from the two groups and did not describe the methods or results in detail.

A recent systematic review of exercise therapy in non-specific neck pain showed inconsistent evidence for the use of group exercise for chronic or frequent neck pain. Evidence was found to support the use of proprioceptive exercises in reducing subjective pain and disability, although the evidence was conflicting for objective measures of function. There was also evidence to support the use of dynamic resisted strengthening exercises for the neck and shoulder. However, Delphi consensus was sought on these points because the evidence was not from a study involving people with WAD.

Another systematic review of rehabilitation interventions for neck pain found two RCTs comparing group fitness classes versus unspecified control groups. No difference was found for either pain or sick leave at one or six months. An RCT with an active group receiving individual proprioceptive re-education showed that this relieved pain more than a waiting list control group.

Delphi findings contribute to the body of knowledge on the effects of exercise in the chronic stage as follows:

- Advice about coping strategies combined with exercise is more effective than exercise alone in returning to normal activity (unanimity 100%)
- Mobilising exercises are effective in reducing pain (consensus 96%)
- Exercises based on individual patient assessment are more effective than a generalised exercise programme in improving function (consensus 92%)
- Strengthening exercise is more effective than passive physiotherapy in improving function (consensus 76%)
- Proprioceptive exercise improves neck function (majority view 73%)
- Group exercise is effective in improving function (majority view 68%)
- Strengthening exercise is more effective than passive physiotherapy in reducing pain (majority view 62%)
- Extension retraction exercises are effective in improving neck function (majority view 58%)
- Standard exercise (stretching, isometric, isokinetic) is more effective than phasic exercise (rapid eye-hand-neck movements) in improving function (majority view 54%).

There is no Delphi evidence to suggest that strengthening exercises are more effective than either endurance training or body awareness training in reducing pain or in improving function.
Exercise therapy

- Advice about coping strategies combined with exercise is more effective than exercise alone in returning to normal activity (unanimity 100%)
 Level IV
- Mobilising exercises are effective in reducing pain (consensus 96%)
 Level IV
- Exercises based on individual patient assessment are more effective than a generalised exercise programme in improving function (consensus 92%)
 Level IV
- Strengthening exercise is more effective than passive physiotherapy in improving function (consensus 76%)
 Level IV
- Proprioceptive exercise improves neck function (majority view 73%)
 Level IV
- Group exercise is effective in improving function (majority view 68%)
 Level IV
- Strengthening exercise is more effective than passive physiotherapy in reducing pain (majority view 62%)
 Level IV
- Extension retraction exercises are effective in improving neck function (majority view 58%)
 Level IV
- Standard exercise (stretching, isometric, isokinetic) is more effective than phasic exercise (rapid eye-hand-neck movements) in improving function (majority view 54%)
 Level IV

Physical agents (including electrotherapy)

No individual studies were found looking at the effects of physical agents in people with chronic whiplash injuries. A systematic review included an RCT that compared therapeutic ultrasound with placebo ultrasound but found no difference between them in relation to pain. The same systematic review found no evidence relating to EMG biofeedback, massage, thermotherapy, electrical stimulation, or TENS in chronic neck pain. Consensus evidence was not sought as this question arose after the Delphi questionnaire had been finalised and therefore was not included.

Therapeutic ultrasound is no more effective in reducing pain than placebo ultrasound.
Level Ia

Acupuncture

No studies were found that looked at the effectiveness of acupuncture for treating whiplash injuries alone. A systematic review by Smith et al. investigated the effects of acupuncture on chronic neck and back pain included two RCTs of acupuncture for chronic neck pain, rated as low validity. One of these compared acupuncture with sham TENS and found no significant differences in pain at one week or 21-28 days after treatment. The other RCT compared traditional oriental meridian acupuncture with a delayed treatment control group and found a significant benefit for acupuncture (12/15 vs. 2/15 ‘improved’, relative benefit 6.0 (95% CI 1.6 to 22)). Overall the review found no convincing evidence of pain relief by acupuncture for neck or back pain. Another systematic review found two RCTs looking at people with mechanical neck pain: one acupuncture versus placebo and the other electro-acupuncture versus traction combined with short-wave diathermy. The trials did not support the use of acupuncture for mechanical neck pain.

A well-conducted RCT (Pedro 7/10) of people with chronic neck pain (due to fibromyalgia or whiplash) by Irnich et al (n=177) compared acupuncture with massage and with a control group that received sham laser acupuncture. After one week, there was no significant difference between acupuncture and sham laser acupuncture, but motion related pain was significantly less in the acupuncture group than in the massage group. There were no statistically significant differences in pain related to motion and direction or health-related quality of life between the three treatments at three months.
Delphi findings were inconclusive in terms of whether acupuncture is more effective than either massage or sham acupuncture in reducing pain.

Evidence Summary 37

Acupuncture
- Consensus neither supported nor refuted the use of acupuncture for people with chronic WAD.

For non-specific chronic neck pain:
- The effectiveness of acupuncture for chronic neck or back pain in reducing pain is inconclusive
- Acupuncture is as effective as massage and sham acupuncture for chronic neck and back pain

Evidence Summary 38

Multidisciplinary psychosocial rehabilitation
- Multidisciplinary rehabilitation is more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function (consensus 78%).

4.3.5 Multidisciplinary psychosocial rehabilitation

No reviews were found looking at the effectiveness of psychosocial interventions for chronic whiplash injuries and therefore evidence was sought from research on treatment for neck pain. A systematic review of multidisciplinary psychosocial rehabilitation in people with non-specific neck and/or shoulder pain found two methodologically weak studies, only one of which was randomised. The non-randomised study showed no difference in effects of multidisciplinary active rehabilitation and traditional rehabilitation consisting of physiotherapy, rest and sick leave after 12 or 24 months of follow up. The RCT in the review found no differences in pain or functional status between a five-week in-patient multimodal cognitive behavioural therapy and a psychologist acting as a ‘coach’ to other health professionals, after the therapy ended or at six months.

A systematic overview of the evidence found, in addition to the systematic review by Karjalainen, two recent RCTs investigating the effectiveness of multimodal treatment of chronic non-specific neck pain. The overview found no consistent differences between multimodal cognitive behavioural therapy versus other treatments in level of pain or time taken off work. However in view of the absence of evidence from people with WAD this question was included in the Delphi questionnaire.

Delphi findings indicate that, in the chronic stage, multidisciplinary rehabilitation is more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function (consensus 78%).
Treatment recommendations for physiotherapy intervention for people with WAD in the chronic stage (i.e. more than 12 weeks after injury)

Manipulation and manual mobilisation

- The following should be considered for pain reduction: (ES 34)
 - Manual mobilisation
 - Manipulation
 - Combination of manipulation and manual mobilisation.
- Combination of manual mobilisation and manipulation should be considered to improve function.

Combining manipulation and exercise (ES 34)

- A combination of manipulation and exercise may be more effective than manipulation alone in:
 - Reducing pain
 - Improving function
 - Increasing patient satisfaction

Exercise therapy (ES 35)

- Combined advice about coping strategies and exercise may be more effective than exercise alone in assisting people's return to normal activity.
- Mobilising exercises should be considered for the reduction of pain.
- Group exercise should be considered to improve function.
- Proprioceptive exercises should be considered to improve function.
- Strengthening exercises may be more effective than passive treatment in improving function and in reducing pain.
- Exercise based on individual assessment is likely to be more effective than general exercise in improving function.
- Standard exercise (stretching, isometric, isotonic) may be more effective than phasic exercise (rapid eye-hand-neck movements) in improving function.
- Extension retraction exercises could be considered to improve neck function.

Multidisciplinary psychosocial packages (ES 38)

- Multidisciplinary rehabilitation may be more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function.

Acupuncture (ES 37)

- There is no evidence to support or refute the use of acupuncture for people with WAD.

Physical agents (including electrotherapy) (ES 36)

- The use of the following cannot be supported or refuted:
 - Ultrasound
 - EMG biofeedback
 - Thermotherapy
 - Electrical stimulation
 - TENS
 - Massage
4.4 Education and advice for people with WAD

The GDG was keen to develop practical guidelines and to outline the kind of advice that is likely to be most useful to people with WAD. This information could not be drawn from the review carried out by the GDG, but a link is made to other work in the field. A recent systematic review of the literature has led to a framework for patient centred information and advice relating to WAD. The emerging key messages from the review are:

- Serious physical injury is rare
- Reassurance about good prognosis is important
- Over medicalisation is detrimental
- Recovery is improved by early return to normal pre-accident activities, self-exercise and manual therapy
- Positive attitudes and beliefs are helpful in regaining activity levels
- Collars, rest and negative attitudes and beliefs delay recovery and contribute to chronicity.

These findings are published as The Whiplash Book. This patient-focused booklet is recommended for use with for people with WAD, since it is based on consistent and reasonably robust evidence.

Evidence Summary 39

Education and advice

Summary statements about appropriate education and advice can be found in The Whiplash Book.

Recommendations on education and advice that should be given to people with WAD (ES 39)

- Physical serious injury is rare
- Reassurance about good prognosis is important
- Over medicalisation is detrimental
- Recovery is improved by early return to normal pre-accident activities, self-exercise and manual therapy
- Positive attitudes and beliefs are helpful in regaining activity levels
- Collars, rest and negative attitudes and beliefs delay recovery and contribute to chronicity

4.5 Promoting self-efficacy

Healthcare in the 21st century must be patient-centred. Physiotherapists need to be competent in communicating with patients and in understanding patients’ needs and possess good education skills. An important aim of a physiotherapy intervention should be to enable patient empowerment and increase patient self-efficacy. These wider issues apply to the physiotherapy treatment of WAD.

4.5.1 Health care must be patient-centred

The NHS Plan clearly set out the need for more patient information, greater patient choice and a focus on patient-centred care. This emphasis is also in evidence in the CSP's Standards of physiotherapy practice and the Health Professions’ Council Standards of Proficiency.
Barr and Threlkeld see patients and clinicians as partners in the design of interventions which will achieve the best outcome for the particular person’s lifestyle. The models used in the establishment of a meaningful and effective partnership or therapeutic relationship have been described. The nature of the relationship between clinician and patient probably varies at different stages of treatment; sometimes the patient is more passive and at other times taking greater control. But the main aim of physiotherapy management is to encourage patients to take control of their own condition.

4.5.2 Communicating with patients and understanding their needs

Health Promotion experts have proposed a number of ways in which people can be helped to take more control of their health and grow in autonomy. Clinicians should understand patients’ knowledge, beliefs, values and standards but also acknowledge that their own knowledge, values, beliefs and standards may differ significantly from the patients. Trust and openness within the therapeutic relationship needs to be established from the start. It is important to ask patients what they are expecting from treatment because patients’ expectations may differ from clinicians’ expectations. Patients should be given the opportunity to express their needs with regard to clinical management. Expressed needs are what patients say that they need. However, patients may also have felt needs that they have identified themselves but that are limited by the patients’ own knowledge of healthcare. Sometimes patients lack the motivation or assertiveness to express their felt needs and may need encouragement from clinicians. Evidence is growing that patients who are well informed about their treatment and the reasons for it, and who are involved in decisions, have better outcomes than those who do not share in the decision making process. At the same time therapists may not be taking full advantage of patients’ potential for participating in their own care, e.g. in goal setting.

Good communication leads to patient empowerment, enhanced quality of care, improved satisfaction and better health outcomes. Professional practice should be modified in response to people’s needs. Communication is enhanced if the clinician speaks slowly and deliberately, keeps questions short and asks one question at a time. Good listening skills are essential and clinicians need good interpersonal skills to pick up nuances from unspoken words or gestures.

4.5.3 Clinicians should possess good education skills

Clinicians’ educational skills are vital to the therapist-patient partnership and in helping people to empower themselves and develop self-efficacy. Physiotherapists treating people with WAD are generally dealing with adult learners thus the principles described in Knowles’ “Theory of Adult Learning” will apply. Adults see themselves as self directed and responsible individuals in terms of learning. They possess a wealth of experience which is a resource for their learning. Adult learners are motivated to learn when they perceive the learning activity is directly related to their own personal circumstances and needs. They tend to focus on problem solving rather than abstract content or theory. Many factors affect learning but one of the strongest factors is learning styles which are related to personality. It is important for clinicians to reflect on their own preferred learning style before engaging with patient education. This will make them sensitive to the fact that patients will have varied learning styles. Ewles and Simnett have identified a number of principles for patient education:

1. Say important things first, people will remember best what was said first
2. Stress and repeat key points, emphasise the important points, repetition helps
3. Give specific precise advice related to people’s own physical and social circumstances
4. Structure information, give people headings and deliver material under these headings
5. Avoid jargon, long words and long sentences
6. Use visual aid wherever possible e.g. leaflets, handouts, models, videos and written instructions
7. Avoid saying too much, only two or three key points will be remembered from each session
8. Ensure your advice is relevant and realistic with the person’s lifestyle by discussing their needs with them.

9. Ask for feedback from patients to assess their understanding either formally or informally; choose an assessment appropriate to patients’ own learning style.

When teaching practical skills three stages have been recommended: a demonstration by the clinician, a rehearsal by the patient observed by the clinician, and practice by the patient alone but observed on a regular basis by the clinician. Moore et al give further details on facilitating learning.

4.5.4 Patient empowerment and self-efficacy

Empowerment has been defined as the process of enabling or imparting power transfer from one individual to another. Empowerment should be seen as the result of an established therapeutic relationship, in other words it is a helping process which enables individuals to change a situation giving them the skill and resources and opportunities to do so. It embodies partnership; it aims to develop a positive belief in self and the future and encompasses mutual decision-making. It also gives individuals i.e. patients the freedom to make choices and accept responsibility for those choices and it recognises that power originates from self-esteem.

A further concept gaining popularity in healthcare systems across the world is self-efficacy. Self-efficacy enables a bridge to be built between the person (the patient) and their own social world, this implies that the individual must make changes to their behaviour in order to maintain or improve their health or disability status. Self-efficacy generally relates to an individual’s confidence in their ability to make a specific change in their behaviour which can be very relevant in terms of people with chronic pain. Self help groups and peer support can be highly instrumental in improving and increasing self-efficacy and have been used extensively in the management of rheumatoid arthritis in the USA and South Africa and the concept is spreading rapidly into other countries.
Summary of the recommendations

Using these recommendations

These recommendations indicate best physiotherapy practice for adults who have experienced whiplash injuries. However, treatment cannot be prescriptive and should always follow individual assessment. A grade recommendations are based on findings of controlled trial(s), B grade recommendations on other well conducted studies, C grade recommendations on expert opinion and good practice points on the expertise of the Guidelines Development Group (GDG) (see section 2.7 and Appendix A).

Mechanism of injury (ES 1)

Physiotherapists should be aware of theories that are developing to explain the mechanism of whiplash injury in order that they can relate the site of injury to the person’s symptoms and plan their physiotherapy management.

Classification (ES 2)

The Quebec Task Force classification should be used by physiotherapists for WAD with grade II subdivided into IIa and IIb, in order to assist with diagnosis and prognosis.

Good practice point

Recovery (ES 3)

Physiotherapists should advise people with WAD that they are very likely to recover.

Risk factors that may influence prognosis

Information should be sought in order that risk factors can be identified at the assessment stage as they can adversely affect prognosis.

At the time of injury, the following factors indicate that a poor prognosis is likely (ES 4)

- Relatively low weight of person’s vehicle compared with other vehicle involved
- Poor headrest position (i.e. not level with the top of the head, not close to the back of the head)
- Rear end collisions where the person is looking to one side.

The following pre-existing factors indicate a poorer prognosis is likely (ES 5)

- Pre-trauma neck ache
- Pre-existing degenerative changes
- Low level of job satisfaction
- Pre-trauma headaches

The following post-injury factors indicate that a poorer prognosis is likely (ES 6)

- High initial pain intensity
- Headache for more than six months following injury
- Neurological signs present after injury

Barriers to recovery

Psychosocial barriers to recovery (ES 7)

- Compensation issues may not be a barrier to recovery from WAD
Physiotherapists should be aware of the wide range of psychosocial barriers to recovery:
- high fear of pain and movement
- low self-efficacy
- severe anxiety
- severe depression
- low pain locus of control
- high use of passive coping strategies
- chronic widespread pain
- high tendency to catastrophise
- problems in relationships with others
- a series of previously failed treatments
- non-compliance with treatment and advice
- unrealistic expectations of treatment
- inability to work because of the pain
- negative expectations of treatment
- poor understanding of the healing mechanism
- failure of the physiotherapist to meet an individual person’s needs
- poor clinical reasoning by the physiotherapist

Physiotherapists should assess for psychosocial barriers at all stages after injury

Ongoing moderate to severe symptoms six months after injury are likely to be associated with post traumatic stress syndrome

Occupational barriers to recovery (ES 8)
Physiotherapists should be aware that perception of work and job context and working conditions may be barriers to recovery

Range of possible symptoms encountered with WAD (ES 9 and section 3.5)
Physiotherapists should be aware that the symptoms of WAD can include: neck pain, headache, shoulder and arm pain, generalised hypersensitivity, paraesthesia and muscle weakness, temporomandibular joint pain and dysfunction, visual disturbance, impairment of the proprioceptive control of head and neck position and impaired cognitive function

Physiotherapy assessment and examination of people with WAD

Valid consent (ES 10)
Valid consent should be sought and recorded in line with national standards and guidance, and local organisational policy

Access to physiotherapy service (ES 11, 12)
Physiotherapists should prioritise entry into the physiotherapy service by:
- Screening individual people
- Providing a physiotherapy service in the accident and emergency department
- Assessing individual people by telephone

Physiotherapists should prioritise people who:
- Find their activities of daily living disrupted as a result of WAD
- Are unable to work as a result of WAD
- Have a more recent injury

Subjective assessment (ES 13)
A thorough subjective assessment is essential to help plan subsequent examination and treatment. Good practice point
Serious pathology (red flags) (ES 14)

- People with WAD must be screened for red flags.
- People with bilateral paraesthesia, gait disturbance, spastic paresis, positive Lhermittes sign, hyper reflexia, nerve root signs at more than two adjacent levels, progressively worsening neurological signs, symptoms of upper cervical instability, non-mechanical pain which is unremitting and severe must be referred immediately to the nearest accident and emergency department.
- People with positive stress tests of the cranio-vertebral joints, vertebral column malignancy or infection, a past history of cancer, rheumatoid arthritis, long-term steroid use, osteoporosis, systemically unwell generally, structural deformity, other conditions and syndromes associated with instability or hypermobility should be treated with caution.

The physical examination (ES 15)

- Joint instability testing should only be conducted by a specially trained physiotherapist.
- Cervical manipulation and pre-manipulative testing techniques should be avoided for people with WAD.
- Physiotherapists need to know when special tests and investigations are indicated and how to carry out the tests or refer people appropriately.
- People with WAD presenting with signs and symptoms of instability must immediately be referred for further investigation.
- Inexperienced physiotherapists must know when to ask advice from senior staff.

Defining the aims of physiotherapy treatment (ES 16)

Although treatment is tailored to individual needs general aims of physiotherapy treatment should be to:

- Improve function
- Facilitate empowerment of the person with WAD
- Return the person to normal activity/work
- Relieve symptoms

Advising on pain relief (ES 17)

- Physiotherapists should refer to local guidelines for prescription of analgesia.
- Where guidelines do not exist physiotherapists and people with WAD should seek appropriate medical advice.
Treatment recommendations for physiotherapy intervention for WAD in the acute stage (zero to two weeks after injury)

Soft collars
- The use of soft collars is not recommended (ES 18)
 - **Grade**: C

Manual mobilisation
- Manual mobilisation should be considered for the reduction of neck pain in the initial stages (ES 21)
 - **Grade**: B
- Manual mobilisation should be considered to increase neck range of movement (ES 21)
 - **Grade**: C
- Manual mobilisation should be considered to improve function (ES 21)
 - **Grade**: C
- Soft tissue techniques should be considered for the reduction of pain (ES 19)
 - **Grade**: C

Exercise therapy
- Active exercise should be used to reduce pain (ES 19 and 22)
 - **Grade**: A
- Active exercise for pain reduction should be started within 4 days of injury (ES 22)
 - **Grade**: A
- An active exercise programme devised for each individual following assessment should be considered for the reduction of pain (ES 19)
 - **Grade**: C

Education and advice
- Education on self-management should be provided, to reduce patients’ symptoms (ES 24)
 - **Grade**: A
- Returning to normal activities as soon as possible should be encouraged (ES 20)
 - **Grade**: A
- Providing education about the origin of the pain should be considered for reducing pain (ES 19)
 - **Grade**: C
- Providing advice about coping strategies may be helpful for the reduction of pain (ES 19)
 - **Grade**: C
- Relaxation should be considered for reducing pain (ES 19)
 - **Grade**: C

Physical agents (including electrotherapy)
- The use of TENS should be considered for reducing pain (ES 19)
 - **Grade**: C
- The following are unlikely to be effective in reducing pain: (ES 19)
 - Traction
 - Infrared light
 - Interferential therapy
 - Ultrasound treatment
 - Laser treatment
 - **Grade**: C
- There is insufficient evidence to support or refute the use of the following (ES 19)
 - Massage
 - Acupuncture
 - PEMT
 - **Grade**: C

Good practice point
Treatment recommendations for physiotherapy intervention for WAD in the sub acute stage (i.e. more than 2 weeks and up to 12 weeks after injury)

Manipulation and manual mobilisation
- Combined manipulation and manual mobilisation should be considered for reducing pain (ES 26)
 - Grade C
- Combined manipulation and manual mobilisation should be considered for improving function (ES 26)
 - Grade C
- The risk of serious adverse events from cervical manipulation may be increased after whiplash injury (ES 27)
 - Good practice point

Exercise therapy
- There is unlikely to be any benefit in including kinaesthetic exercise in a programme of functional improvement exercise (ES 28)
 - Grade B
- Muscle retraining including deep neck flexor activity may be effective in improving function (ES 33)
 - Grade C

Multimodal packages
- A multimodal programme (including postural training, manual techniques and psychological support) should be used to reduce pain and speed return to work (ES 29)
 - Grade A

Acupuncture
- The use of acupuncture cannot be supported or refuted (ES 30)
 - Grade C

Education and advice (ES 31)
- Education should be considered for the improvement of neck function (ES 31)
 - Grade C
- Advice about coping strategies should be considered, to enable people to return to normal activities (ES 31)
 - Grade C

Physical agents (including electrotherapy)
The following treatments could be considered for the reduction of pain: (ES 33)
- TENS
 - Grade C
- Massage
- Soft tissue techniques
The following treatments are unlikely to reduce neck pain:
- Traction (ES 32)
- Infrared light (ES 33)
- Interferential therapy (ES 33)
- Laser treatment (ES 33)
- Ultrasound (ES 33)
Treatment recommendations for physiotherapy intervention for people with WAD in the chronic stage (i.e. more than 12 weeks after injury)

Manipulation and manual mobilisation
- The following should be considered for pain reduction: (ES 34)
 - Manual mobilisation
 - Manipulation
 - Combination of manipulation and manual mobilisation.
- Combination of manual mobilisation and manipulation should be considered to improve function.

Combining manipulation and exercise (ES 34)
- A combination of manipulation and exercise may be more effective than manipulation alone in:
 - Reducing pain
 - Improving function
 - Increasing patient satisfaction

Exercise therapy (ES 35)
- Combined advice about coping strategies and exercise may be more effective than exercise alone in assisting people’s return to normal activity
- Mobilising exercises should be considered for the reduction of pain
- Group exercise should be considered to improve function
- Proprioceptive exercises should be considered to improve function
- Strengthening exercises may be more effective than passive treatment in improving function and in reducing pain
- Exercise based on individual assessment is likely to be better than general exercise in improving function
- Standard exercise (stretching, isometric, isotonic) may be more effective than phasic exercise (rapid eye-hand-neck movements) in improving function
- Extension retraction exercises could be considered to improve neck function

Multidisciplinary psychosocial packages (ES 38)
- Multidisciplinary rehabilitation may be more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function

Acupuncture (ES 37)
- There is no evidence to support or refute the use of acupuncture for people with WAD.

Physical agents (including electrotherapy) (ES 36)
- The use of the following cannot be supported or refuted:
 - Ultrasound
 - EMG biofeedback
 - Thermotherapy
 - Electrical stimulation
 - TENS
 - Massage
Recommendations on education and advice that should be given to people with WAD (ES 39)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical serious injury is rare</td>
<td>C</td>
</tr>
<tr>
<td>Reassurance about good prognosis is important</td>
<td>C</td>
</tr>
<tr>
<td>Over medicalisation is detrimental</td>
<td>C</td>
</tr>
<tr>
<td>Recovery is improved by early return to normal pre-accident activities, self-exercise and manual therapy</td>
<td>C</td>
</tr>
<tr>
<td>Positive attitudes and beliefs are helpful in regaining activity levels</td>
<td>C</td>
</tr>
<tr>
<td>Collars, rest and negative attitudes and beliefs delay recovery and contribute to chronicity</td>
<td>C</td>
</tr>
</tbody>
</table>
Research recommendations

Questions for future research

The gaps in the available research evidence that have been identified in the development of these guidelines provide a useful basis for considering appropriate research questions, for which funding can be sought. As there is little definitive evidence for physiotherapy for people with WAD there is a wide range of research recommendations.

6.1 Physiotherapy treatment modalities for people with WAD

- Do soft collars relieve pain compared with advice from a physiotherapist?
- Does manual mobilisation relieve pain compared with advice from a physiotherapist?
- Does manipulation relieve pain compared with advice from a physiotherapist?
- What is the cost-effectiveness of soft collars or manual mobilisation or manipulation, compared with advice from a physiotherapist?
- Does a cognitive behavioural intervention speed return to normal activity compared with advice from a physiotherapist?

Similar questions might be asked of other physiotherapy interventions eg TENS, massage, soft tissue techniques.

6.2 Service development, prioritising treatment and the natural history of WAD

- What is the optimal treatment period for people with WAD?
- Do between four and six visits to a physiotherapist speed return to normal function compared with one session of advice from a physiotherapist?
- What is normal versus delayed recovery time for people with WAD?
- What factors can be used to predict outcome?
- Which biopsychosocial factors are predictive of a successful treatment outcome?
- Does early physiotherapy intervention in the accident and emergency department speed return to normal activity compared with later treatment in the physiotherapy department?
- At which stage of WAD is physiotherapy most effective i.e. acute, subacute or chronic?

6.3 Education and advice for people with WAD

For people with WAD:

- Which exercises should be recommended for WAD?
- Does an individualised exercise programme speed return to normal activity compared with generalised group exercise?
- At what stages and at what frequency is exercise most useful?
- Does an exercise programme given in the first three days since injury speed return to normal activity compared with an exercise programme given two weeks or more after injury?
- What advice should be given to people with WAD?
6.4 Guideline implementation

- Does implementation of these guidelines in a physiotherapy department speed patients’ return to normal activity, compared with before the guidelines’ implementation?
Outcome measures relevant to the treatment of people with WAD

Physiotherapists need to know whether treatment has made a difference to people with WAD. This will help in understanding the nature of WAD and assist in decision making. CSP core standard six indicates that a published, standardised, valid, reliable and responsive outcome measure should be used to evaluate the change in people's health status after physiotherapy intervention. There are several measures that clinicians might consider to evaluate treatment outcome for people with WAD but evidence suggests that physiotherapists may have difficulty finding and choosing outcome measures.

This section identifies a number of measures that might be of use to clinicians. There are many factors to take into account e.g. the nature of the service, the outcome measures already used and the aims of the intervention. The measures suggested here are not recommendations. Each measure should be appraised for validity, reliability and practicality in a particular setting. A range of tools is suggested but it is for practitioners to decide on the aspects of outcome that should be measured.

7.1 Pain

The Visual Analogue Scale (VAS)

The VAS measures intensity of pain and is not disease specific. The patient is asked to indicate where, on a 100mm straight line, best describes their pain, with one end representing 'no pain' and the other end the ‘worst pain possible’. Reliability and validity is established. It usually takes about a minute to complete and is extremely straightforward. Permission to print this scale is unnecessary as it is in the public domain. It is available from: http://www.britishpainsociety.org/pain_scales.html

7.2 Function

The Neck Disability Index

The Neck Disability Index measures function and is derived from the Oswestry Low Back Pain Index. It includes questions about pain, headaches, ability to concentrate, sleep patterns, lifting abilities, work, car driving, hobbies or sport or recreation, activities of daily living and reading. It takes a few minutes to complete and has demonstrated clinical validity in addition to reliability, sensitivity to severity of condition and changes after intervention. It is recommended that users contact the authors to ensure that they are using the most recent version.

7.3 Return to usual activities

The Physiotherapy Specific Function Scale

This tool measures return to usual activities. It is recommended that users contact the authors to ensure that they are using the most recent version.
7.4 A patient centred measure

The Measure Yourself Medical Outcome Profile (MYMOP)

The MYMOP was devised to measure patient generated outcomes in primary care and has been demonstrated to be valid and more sensitive to change than the SF-36 health survey. It is not disease specific and is a practical tool for use in clinical practice. It has four items; the first two relate to two symptoms that are particularly problematic, the third to a functional activity and the fourth to general feeling of wellbeing. It is scored on a seven point Likert scale; the MYMOP profile score is the mean difference in the four items. The measure is in the public domain and so it is unnecessary to gain permission to use it. Full details can be found from: http://www.hsrc.ac.uk/mymop (Accessed 9th June 2005)

7.5 Fear of movement

The Tampa Scale for Kinesiophobia (TSK)

The TSK is a 17-item questionnaire that measures people’s fear of movement/reinjury. People rate each of the questions on a four-point Likert scale with scoring alternatives ranging from ‘strongly disagree’ to ‘strongly agree’. The scores on items four, eight, 12, and 16 are reversed. Total scores range from 17 to 68, with higher scores being indicative of a higher fear of movement/reinjury. The Dutch version of the TSK has good reliability and validity. Recent findings have also shown that the English version of the TSK possesses good reliability and validity.

7.6 Quality of life

The Short Form 36 Health Survey Questionnaire (SF-36)

This is well established as a valid and reliable general measure of health status. It gives an indication of quality of life and covers functional status, wellbeing, overall evaluation of health and change in health. Users may consider whether the shorter versions i.e. the SF-12 or the SF-8 may be more appropriate for their purposes. Permission to use this tool in clinical practice needs to be gained from the web site where an online licence application form can be completed: http://www.sf-36.com (Accessed 9th June 2005)

7.7 Patient satisfaction

Patient satisfaction can be evaluated using the Patient Feedback Questionnaire, part of the clinical audit tools to support implementation of the CSPs Standards of Physiotherapy Practice. The clinical audit tool has been developed to assist physiotherapists in providing the best possible service. Patients are asked a series of questions including how long they waited for an appointment, how much input they had in deciding their treatment plan, how sensitive physiotherapists were to their fears and anxieties, and how they felt about their discharge. Most questions involve ticking a box but people are invited to comment on some issues. The tool can be downloaded free of charge from: http://www.csp.org.uk/effectivepractice/standards/publications.cfm?id=210 (Accessed 9th June 2005)
7.8 Anxiety and depression

The Hospital Anxiety and Depression Scale (HADS)

The HADS\(^{188}\) is a 14-item scale that assesses anxiety (seven items) and depression (seven items). The scale does not assess severe psychopathology and might, therefore, be more acceptable to people with chronic pain.\(^{189}\) The HADS is also thought to be more sensitive to mild forms of psychiatric disorders, thus avoiding the ‘floor effect’, where respondents cluster around the lowest possible score and change is harder to detect, and which is frequently observed when psychiatric questionnaires are used for people with chronic pain.\(^{189}\) All items are scored on a four-point scale from zero to three. Both the anxiety and depression subscales have established validity and reliability.\(^{190–192}\) There is no single, generally accepted cut-off score for the HADS. In the original study two cut-off scores for both subscales: 7/8 for possible and 10/11 for probable anxiety or depression (with ranges of 0–21 for each subscale) were recommended.\(^{188}\) The scale can be ordered from:

http://www.nfer-nelson.co.uk/catalogue/catalogue_detail.asp?catid=98&id=1125
(Accessed 9th June 2005)

7.9 Self-efficacy

The Chronic Pain Self-efficacy Scale (CPSS)

The CPSS\(^{193}\) is a 22-item measure containing three subscales, which assess a person’s (a) self-efficacy for pain management (five-items), (b) self-efficacy for physical function (nine-items), and (c) self-efficacy for coping with symptoms (eight-items). The measure possesses good reliability and validity.\(^{193}\) The scale appears as an Appendix to the cited paper and thus it is freely available.

7.10 Delphi findings and GDG advice

Delphi findings indicate that the following are likely to be useful outcome measures:

- For pain: The visual analogue scale (consensus 93%)
- For function: The neck disability index (consensus 78%)
- For quality of life: The SF-36 (majority view 58%)
- For anxiety and depression: The hospital anxiety and depression scale (majority view 54%)

The GDG felt that many clinicians needed greater awareness of the range of outcome measures available. For these reasons the GDG advise that any of the outcome measures in section 7 could be considered for people with WAD.

The GDG, using informal consensus methods, suggest that the following tools may be useful in measuring outcome of WAD:

- For return to usual activities: The physiotherapy specific functional scale
- For a patient centred measure: Measure yourself medical outcome profile (MYMOP)
- For fear of movement: The Tampa scale of kinesiophobia (TSK)
- For patient satisfaction: The CSP’s clinical audit tool, The patient feedback questionnaire
- For self-efficacy: The chronic pain self-efficacy scale (CPSS)
Legal issues

Physiotherapists may be required to produce records or prepare a report for legal purposes in connection with people’s WAD injuries. They should follow their organisational policy and procedures and also contact the CSP for advice. The information paper Reports for Legal Purposes (PA1) can be downloaded from www.csp.org.uk/libraryandinformation/publications/view.cfm?id=153 (Accessed 9th June 2005). Some key points are outlined below.

- The solicitor should confirm the request in writing and state that a fee will be payable
- The patient’s written consent to the release of information contained in the notes should accompany the request
- Physiotherapists should ensure that local organisational protocols are followed
- Junior physiotherapists should seek assistance from their clinical supervisors
- Physiotherapy reports should contain information under the following headings:
 - history
 - examination and treatment
 - future care and prognosis
 - conclusion
- Physiotherapists must separate information in the report into three categories: information that is reported to them by people with WAD, observable facts and professional opinions
- Inexperienced physiotherapists should seek advice where necessary.
Implementation

9.1 Background

Implementation is defined as the systematic introduction of an innovation, a plan or a change of proven value.\(^{195}\) Research findings will only influence clinical practice if that knowledge is translated into action.\(^{196}\) Policy-makers, managers, professional body representatives, educators and managers can all promote the use of guidelines but in practice it is clinicians and their patients who implement recommendations. Developing and publishing good quality guidelines is not a guarantee for improved clinical practice.\(^{197}\) Clinicians may find the use of guidelines inconvenient, time consuming and in conflict with their own clinical experience. In addition, national and local guidelines may be inconsistent and this can lead to confusion and frustration.\(^{198}\) These guidelines for the treatment of WAD are therefore likely to present challenges to clinical physiotherapists seeking to implement them.

Over the past decade, there has been an increase in the understanding of the many factors (social, behavioural and organisational) which act as barriers to change. Some factors influence the behaviour of health care professionals e.g. the organisation, the system, peer groups, senior colleagues, and individual preference and opinion. All of these factors mean that implementation of guideline recommendations is a complex issue. Implementation strategies are necessary to ensure that guidelines enhance knowledge, and change values, beliefs, attitudes and clinicians’ perceptions.\(^{199}\) Currently there is little evidence to direct us to the most appropriate dissemination and implementation strategy for clinical guidelines. However, appraisal of the common barriers and facilitators to change are useful starting points.

9.2 Potential barriers and facilitators

A guidelines implementation strategy should seek to address known key barriers, maximise identified facilitators, be adequately planned and well monitored. Many important barriers have been identified.\(^{196}\) Factors which in some circumstances may be perceived as barriers to change can sometimes act as levers for change e.g. patients’ expectations and opinion leaders’ views.\(^{196}\) The following provides a brief summary of some key barriers and facilitators and how they can be applied to these guidelines.

9.2.1 Knowledge barriers

Knowledge of the existence of guidelines and thus the recommendations made may be limited.\(^{200}\) In a recent survey, physiotherapists who were questioned about methods of dissemination, suggested that the CSP should raise awareness of important publications.\(^{201}\)

The CSP promotes an awareness of the availability of the guidelines to all members through, for example:

- Articles in ‘Frontline’ and other relevant publications
- Promoting the guidelines at CSP congresses
- Liasing with relevant clinical interest groups
- Liasing with universities to influence undergraduate and postgraduate students.
9.2.2 Organisational barriers (including time)

Time limitations and difficulties in communication and collaboration with other healthcare practitioners have been identified as barriers to the use of guidelines within physiotherapy. Clinicians need time to appraise guidelines, to discuss the recommendations and consider the implications of implementation. Practice setting may be important e.g. physiotherapists working in isolation in community clinics or private practice may experience inadequate peer support and access to information. There are important differences in the needs and perspectives of clinicians and their managers in applying guidelines. Locally, it will be important that managers and clinicians support activities such as those set out below, to facilitate implementation:

- Discussion groups to break down barriers across different practice settings (including private practice)
- Identification and recognition of the perspectives of both clinicians and managers
- Educational support and outreach with protected time for these activities.

9.2.3 Cost and access

Although physiotherapists may be aware of the existence of guidelines, studies have shown they have difficulty in obtaining copies, or they may be frustrated by sharing one copy amongst many colleagues. The cost of guidelines can also contribute to difficulties with access.

The CSP currently makes available:

- Free summaries of guidelines which are widely disseminated
- Access to the full guidelines on the CSP web-site with free downloadable copies.

To overcome cost and access barriers the CSP is also considering:

- Producing the full guidelines on CD-ROM.

9.2.4 Practitioner factors

These include the beliefs and attitudes of clinicians, the skills of individual clinicians, the influence of opinion leaders and the local experience of adapting practice to national guidelines. Some clinicians will hold beliefs that differ to the guidelines recommendations and/or may adhere to traditional or alternative practices. The implementation strategy will need to address these issues. A frequently reported barrier to the implementation of guidelines relates to a lack of knowledge or skills in the target group of clinicians.

These barriers may be addressed by:

- Continuing professional development and education
- Making a strong link between other initiatives within the profession, for example evidence-based practice and to other national guidelines.

Guidelines recommendations can identify areas where individual clinicians need additional education and training. A qualitative study identified several physiotherapists who felt that they had insufficient knowledge and skill in using cognitive-behavioural principles or manipulation in managing people with back pain. In addition, physiotherapists have reported a lack of knowledge in applying behavioural principles to exercise therapy.
9.2.5 Patient expectations

It is becoming increasingly clear that patients’ beliefs and expectations of treatment influence treatment outcome.201,202 Patients’ expectations may act as a barrier to guidelines implementation as many patients may have preferences for interventions now considered outdated or ineffective. This highlights the importance of dealing with patient expectations as part of the decision-making process when using clinical guidelines in practice. Implementation for these guidelines may need to include education and role-play on incorporating patients’ preferences and expectations into decision-making.

9.3 Interpreting the implications of guidelines recommendations

Guidelines recommendations are based on consensus in addition to scientific evidence.204 Therefore recommendations are influenced by both the research evidence surrounding the efficacy of different interventions and also by the views and opinions of the GDG membership.204 When translating evidence into clinically relevant recommendations, many factors play a role and these factors can vary locally and nationally (Table 9.1). It is likely that nationally developed guidelines will undergo a level of local adaptation before they are implemented.

9.4 The challenge of implementing guidelines

Research is needed to:

- Study the effectiveness of guidelines implementation strategies
- Demonstrate that implementing recommendations improves patient outcomes.

Studies in this area have been conducted by other professional groups205,206 and it is beginning to be addressed by physiotherapists in the UK.207 Systematic reviews show that information transfer is essential to the process of implementation; practitioners need to know about the guidelines. However passive methods of disseminating and implementing guidelines e.g. publication in professional journals or mailing targeted healthcare professionals, rarely changes professional behaviour.218–220 Rather, multiple interventions are more likely to change practice221 and these are summarised below (Table 9.1).
Table 9.1 Summary of the effectiveness of interventions to promote implementation

<table>
<thead>
<tr>
<th>Level of effectiveness</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistently effective</td>
<td>Educational outreach visits</td>
</tr>
<tr>
<td></td>
<td>Reminders (computerised or manual)</td>
</tr>
<tr>
<td></td>
<td>Multifaceted interventions (combining two or more of the following: audit and feedback, reminders, local consensus process and marketing)</td>
</tr>
<tr>
<td></td>
<td>Interactive educational meetings (participation of clinicians in workshops that include discussions or practice)</td>
</tr>
<tr>
<td>Mixed effects</td>
<td>Audit and feedback (any summary of clinical performance)</td>
</tr>
<tr>
<td></td>
<td>Local opinion leaders (use of ‘expert’ clinicians nominated by their colleagues as educationally influential)</td>
</tr>
<tr>
<td></td>
<td>Local consensus process (inclusion of participating providers in discussion to ensure agreed approach to management of the clinical problem)</td>
</tr>
<tr>
<td></td>
<td>Patient-mediated interventions (any intervention aimed at changing the performance of clinicians where specific information was sought from or given to patients)</td>
</tr>
<tr>
<td>Little or no effect</td>
<td>Educational materials (distribution of published or printed recommendations for clinical care, including clinical practice guidelines, audio-visual materials and electronic publications)</td>
</tr>
<tr>
<td></td>
<td>Didactic educational meetings (lectures)</td>
</tr>
</tbody>
</table>

Adapted from Bero et al in Haines and Donald

Active strategies for implementing and assessing the effectiveness of new guidelines are essential. Suggested strategies include the use of reminders of guidelines’ availability and locally held interactive educational meetings about the guidelines’ content. Improved adherence to guidelines for back pain management by physiotherapists (n=113) was demonstrated when an active implementation strategy was used. Physiotherapists’ knowledge of guideline recommendations has been improved by education, discussion, role-playing, feedback and reminders.

9.5 Methods of dissemination and implementation of these guidelines

Various methods will be used to disseminate the WAD guidelines. These will include:
- Articles to promote the guidelines in ‘Frontline’
- Press releases to relevant professional bodies and other organisations
- The guidelines will be available to download from the CSP web site
- Printed copies will be available for purchase through the CSP
- Promoting the guidelines at the CSP Congress.

9.6 Implementation/audit pack

An audit/implementation pack will be developed by the CSP to support implementation of these guidelines.
Using the guidelines in clinical practice

This section considers the theory of reflective practice and applies this theory to the WAD guidelines. The accompanying ‘reflective practice record sheet’ (Appendix J) may be used by physiotherapy practitioners as part of their continuing professional development. The intention is to suggest a starting point for applying the guidelines to clinical practice.

10.1 Why reflect?

As practitioners we make decisions on the basis of:

- Formal information gained by asking questions, focusing on observable features and balancing probabilities amidst a degree of uncertainty, for example information from high quality clinical research and from patients.
- Less formal information, drawn from our personal assumptions and intuition about the nuances of situations.

When trying to describe or justify our clinical decisions, or explain our development needs, it can be difficult to distinguish between intuitive thoughts and conscious pattern recognition, based on previously encountered similar situations.

Reflecting on our practice alone and with our colleagues can help us to:

- Think about our formal decision-making; what we do well as practitioners and what areas need improvement.
- Assess our level of self-awareness, examine the assumptions that underlie our thoughts and understand the contribution they make to our decisions – intuitive decision-making.
- Confirm our own values and confront ethical dilemmas in our practice so we become empowered to take action – ethical decision-making.

These areas and their overlap are illustrated in figure 10.1.

Figure 10.1 Overlap between reflective activities
10.2 Using the WAD guidelines to help reflection

Finding a focus for reflection on practice can be difficult. Section 4 of the WAD guidelines provides a useful framework by:

1. Raising key questions about WAD-related practice
2. Identifying two key areas for consideration in relation to each question:
 - what is the evidence and where do gaps in the evidence exist?
 - what recommendations will help ensure best practice in the current state of knowledge about WAD?

But it is also useful to add a third key area for consideration when reflecting:

- What is the clinical relevance across a broad range of factors – assessment, intervention, psychosocial factors, medico legal issues?

Figure 10.2 illustrates how this framework links to the reflective process described above.
A reflective practice record sheet to help summarise your reflective practice in relation to WAD is included with these guidelines, in Appendix J.

1. The record sheet starts with a description of a whiplash related practice-based event. This might have occurred, for example, during an assessment or intervention, a psychosocial interaction or an administrative process. It might have involved any or all of the three types of decision making described on the left of figure 11.2.

2. Think generally about how you responded. Describe your objective thoughts and actions as well as your subjective feelings.

3. Try to explain why you responded as you did.

4. Next, set this experience in the WAD framework by considering what clinical question/s it might be linked to, for example ‘what are the symptoms of WAD?’ or ‘what is the prognosis and natural history of WAD?’ (see the clinical questions, section 2.2 and sections 3.6 and 3.7)

Go on to consider what issues your experience seems to raise in relation to the three key elements above.

5. Evidence-base: did your experience confirm existing evidence or demonstrate a gap? Have you any thoughts about how such a gap could be addressed in the context of your own or others’ practice?

6. Clinical relevance: how did your experience demonstrate the clinical relevance of the identified question/s? Perhaps it called their relevance into question?

7. Recommendations: to what extent did your response conform to expected good practice as defined in the WAD guidelines? Does it suggest any additions or amendments to the recommendations?

Now examine what the event has revealed about your own personal development in terms of:

8. Formal decision-making: is there a development need? What are your strengths?

9. Intuitive decision-making: how well were you able to articulate your intuitive thoughts? Has the event revealed anything about your assumptions and level of self-awareness?

10. Ethical decision-making: did you feel any conflict of values? How well did you deal with it?

11. Finally, ask yourself, is this a recurring scenario? In other words, have you completed several reflective practice record sheets that describe similar events and issues? Have others recounted similar experiences when you have shared your reflections with your colleagues? If so, are there any policy implications that ought to be discussed and disseminated to a wider audience across the department or trust?
Links with other guidelines

11.1 Guidelines for the use of radiological investigations

The Royal College of Radiologists has published guidelines for making the best use of a department of clinical radiology. Extracts from this document, relating to diagnostic imaging of the cervical spine, can be found in Appendix H.

11.2 Other guidelines about WAD

• Guidelines for the management of whiplash-associated disorders (2001) Motor Accidents Authority, Sydney, NSW.

Reviewing and piloting these guidelines

The GDG compiled a list of specialists, researchers and practitioners at all levels. They looked to their own departments and beyond to find reviewers who could read the guidelines and assess the practicality of their contents. Time constraints did not allow for piloting beyond this theoretical process. Table 12.1 includes a list of reviewers, their post and speciality at the time of the review.

The draft guidelines and a reviewers’ comments sheet (Appendix I), were distributed to the reviewers on 4th May 2004. Comments returned were collated and discussed at the GDG meeting of 3rd June 2004. Many amendments were made; some examples are indicated below. Overall the advice given by the reviewers was extremely constructive and invaluable in assisting the GDG in producing this high quality document.

<table>
<thead>
<tr>
<th>Name</th>
<th>Post</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joanna Birch</td>
<td>Clinical co-ordinator physiotherapy</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Annette Bishop</td>
<td>Research physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Julie Burge</td>
<td>Senior I physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Guy Canby</td>
<td>Lecturer/practitioner</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Ben Davies</td>
<td>Senior II physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Linda Exelby</td>
<td>Specialist physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Emma Fanning</td>
<td>Junior physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Helen Gidlow</td>
<td>Spinal clinical specialist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Mandy Grocutt</td>
<td>Accident and emergency consultant</td>
<td>Accident and emergency medicine</td>
</tr>
<tr>
<td>Penny Harber</td>
<td>Extended scope physiotherapist</td>
<td>Musculoskeletal A&E</td>
</tr>
<tr>
<td>Rachael Hayes</td>
<td>Senior II physiotherapist</td>
<td>Musculoskeletal – out-patients</td>
</tr>
<tr>
<td>Susan Hintze</td>
<td>Physiotherapy manager</td>
<td>Unstated</td>
</tr>
<tr>
<td>Tom Hughes</td>
<td>Senior II physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Michael Lee</td>
<td>Senior II physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Jeremy Lewis</td>
<td>Research physiotherapist</td>
<td>Musculoskeletal physiotherapy research</td>
</tr>
<tr>
<td>Fiona Ottewell</td>
<td>Head of physiotherapy</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Colette Owen</td>
<td>Senior I physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Helen Payne</td>
<td>Extended scope physiotherapist</td>
<td>A&E</td>
</tr>
<tr>
<td>Nicola Petty</td>
<td>Principal lecturer</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Patsy Rochester</td>
<td>Senior university lecturer</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Alison Sharp</td>
<td>Clinical specialist</td>
<td>Spinal & musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Toby Smith</td>
<td>Extended scope physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Joanne Stott</td>
<td>Senior I physiotherapist</td>
<td>Musculoskeletal – out-patients</td>
</tr>
<tr>
<td>Emma Thompson</td>
<td>Senior II physiotherapist</td>
<td>Rotational post</td>
</tr>
<tr>
<td>Janet Wakefield</td>
<td>Senior I physiotherapist</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
</tbody>
</table>
Examples of amendments made following review:

- A list of references in alphabetical order of author name was added (Appendix M) to enable the reader to readily access papers
- Minor adjustments were made to the writing style in the systematic review section
- The list of red flags was amended to include ‘other conditions associated with instability or hypermobility’ (section 3.6.4.3)
- The section on assessment was modified so that it did not assume a Maitland approach (section 3.6.5.2)
- The yellow flag section was adjusted to include post-traumatic stress reaction (section 3.4.4.6)
- Papers identified by reviewers that had not been included were obtained and considered for inclusion. Some were added e.g. 113-115. These were related to sections where a comprehensive search had not been conducted
- Numerous typing errors were corrected and some points tightened or clarified
- The accident and emergency consultant advised that those with serious pathology need immediate referral to the accident and emergency department; this was emphasised in the document (section 3.6.4.1).
Procedure for updating these guidelines

The systematic review and Delphi consensus methods will be updated in 2010. At that time, consideration will be given to putting the Delphi questionnaire on the CSP website so that a wide range of member opinions can contribute to the 2010 edition of the guidelines. The Delphi technique is new within health care but potentially powerful in capturing expert opinion for guidelines production.
References

17. Jull, G (2001). For self-perceived benefit from treatment for chronic neck pain, multimodal treatment is more effective than home exercises, and both are more effective than advice alone. *Australian Journal of Physiotherapy* **47** (3), 215

23 Humphreys, BK and Irgens, PM (2002). The effect of a rehabilitation exercise program on head repositioning accuracy and reported levels of pain in chronic neck pain subjects. *Journal of Whiplash and Related Disorders* 1, 99–112

57 Crowe, H (1928). Injuries to the cervical spine. In Annual meeting of Western Orthopaedic Association, San Francisco, California

73 Suisse, S, Harder, S and Veilleux, M (2001). The relation between initial symptoms and signs and the prognosis of whiplash. European Spine Journal 10 (1), 44–49

74 Mulhall, KJ, Moloney, M, Burke, TE and Masterson, E (2003). Chronic neck pain following road traffic accidents in an Irish setting and it’s relationship to seat belt use and low back pain. Irish Medical Journal 96 (2), 53–54

14

195 Bekkering, GE (2004). Physiotherapy guidelines for low back pain: development, implementation and evaluation, (PhD thesis.) Dutch Institute of Allied Health Care and the Institute for Research in Extramural Medicine (EMGO Institute) of the VU University Medical Centre

Further reading

15.1 Textbooks recommended for assessing people with WAD

The following list of textbooks were derived from the first round of the Delphi process. Specific results from Round Two can be found in Appendix H. The list is presented in order of highest to lowest Delphi scores.

Appendix A

People involved in developing these guidelines

Table 1 The Guidelines Development Group (GDG), 2003–2004

<table>
<thead>
<tr>
<th>Name</th>
<th>Post</th>
<th>Speciality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann Moore</td>
<td>Professor of Physiotherapy, Director of Clinical Research, The University of Brighton</td>
<td>Musculoskeletal physiotherapy, standardised data collection & research methods</td>
</tr>
<tr>
<td>Sue Hammersley</td>
<td>Clinical Specialist, Calderdale & Huddersfield NHS Trust</td>
<td>Musculoskeletal physiotherapy outpatients</td>
</tr>
<tr>
<td>Jonathan Hill</td>
<td>Research Physiotherapist, Keele University.</td>
<td>Musculoskeletal research</td>
</tr>
<tr>
<td>Gail Hitchcock</td>
<td>Extended Scope Physiotherapy Practitioner in Accident & Emergency, Worthing & Southlands Hospitals NHS Trust</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Chris Mercer</td>
<td>Consultant Physiotherapist, Worthing & Southlands Hospitals NHS Trust</td>
<td>Spinal musculoskeletal</td>
</tr>
<tr>
<td>Carole Smith</td>
<td>Physiotherapy Co-ordinator Musculoskeletal Services, Bradford Teaching Hospitals NHS Trust</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Jonathan Thompson</td>
<td>Extended Scope Practitioner, York Health Services NHS Trust</td>
<td>Musculoskeletal physiotherapy & orthopaedics</td>
</tr>
<tr>
<td>Martin Urmston</td>
<td>Physiotherapy Manager, North Manchester Health Care Trust</td>
<td>Musculoskeletal physiotherapy</td>
</tr>
<tr>
<td>Steve Woby</td>
<td>Research Fellow, Physiotherapy Department North Manchester General Hospital/Centre for Rehabilitation Sciences, University of Manchester</td>
<td>Psychosocial & cognitive behavioural interventions</td>
</tr>
<tr>
<td>Alison Hudson</td>
<td>Fundraising Manager, BackCare and Expert Patient</td>
<td>The patient’s perspective</td>
</tr>
<tr>
<td>Anne Jackson</td>
<td>Guidelines Project Manager, CSP</td>
<td>Guideline development methods, Delphi methods, writing</td>
</tr>
<tr>
<td>Jo Jordan</td>
<td>Systematic Reviewer, CSP</td>
<td>Systematic review, guideline development methods, writing</td>
</tr>
<tr>
<td>Helen Whittaker</td>
<td>Clinical Effectiveness Administrator, CSP</td>
<td>General administrative support, minutes, I.T. and data management</td>
</tr>
</tbody>
</table>
Table 2 The Yorkshire Steering Group (1999)

<table>
<thead>
<tr>
<th>Name</th>
<th>Post in 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jill Gregson</td>
<td>Physiotherapy Manager Bradford Royal Infirmary, Bradford Hospitals NHS Trust</td>
</tr>
<tr>
<td>Pam McClea</td>
<td>Superintendent Physiotherapist, Harrogate Health Care NHS Trust</td>
</tr>
<tr>
<td>Sue Jessop</td>
<td>Physiotherapy Manager, Pinderfields General Hospital, Wakefield</td>
</tr>
<tr>
<td>Jo Laycock</td>
<td>Independent Practitioner</td>
</tr>
<tr>
<td>Pam Janssen</td>
<td>Division of Physiotherapy, University of Bradford</td>
</tr>
<tr>
<td>Angela Clough</td>
<td>Faculty of Health and Environment, School of Health Sciences, Leeds Metropolitan University</td>
</tr>
</tbody>
</table>

Table 3 Yorkshire Guidelines Development Group Members (1996)

<table>
<thead>
<tr>
<th>Name</th>
<th>Post in 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group process leader</td>
<td></td>
</tr>
<tr>
<td>Val Steele</td>
<td>Director of Rehabilitation, Bradford Hospitals NHS Trust</td>
</tr>
<tr>
<td>Group topic leaders</td>
<td></td>
</tr>
<tr>
<td>Sue Hammersley</td>
<td>Superintendent Physiotherapist, Huddersfield NHS Trust</td>
</tr>
<tr>
<td>Jonathan Thompson</td>
<td>Superintendent Physiotherapist, Castle Hill Hospital, East Yorkshire Hospitals NHS Trust</td>
</tr>
<tr>
<td>Carole Smith</td>
<td>Superintendent Physiotherapist, Bradford Hospitals NHS Trust</td>
</tr>
<tr>
<td>Angela Clough</td>
<td>Faculty of Health and Environment, School of Health Sciences, Leeds Metropolitan University</td>
</tr>
<tr>
<td>Group members</td>
<td></td>
</tr>
<tr>
<td>Frederique Brown</td>
<td>Senior I Physiotherapist, Leeds Community & Mental Health Trust</td>
</tr>
<tr>
<td>Julie Crompton</td>
<td>Senior I Physiotherapist, Pontefract General Hospital</td>
</tr>
<tr>
<td>Karen Hellawell</td>
<td>Senior I Physiotherapist, Huddersfield NHS Trust</td>
</tr>
<tr>
<td>James Milligan</td>
<td>Superintendent Physiotherapist, Pinderfields General Hospital, Wakefield</td>
</tr>
<tr>
<td>Julie Rogers</td>
<td>Superintendent Physiotherapist, Lincoln Wing, St, James’s Hospital, Leeds</td>
</tr>
<tr>
<td>James Selfe</td>
<td>Lecturer, University of Bradford</td>
</tr>
<tr>
<td>Paul Sharples</td>
<td>Senior Lecturer, Leeds Metropolitan University</td>
</tr>
<tr>
<td>Vicki Stokes</td>
<td>Superintendent Physiotherapist, Dewsbury Health Care</td>
</tr>
<tr>
<td>Emma Summerscales</td>
<td>Senior II Physiotherapist, Huddersfield NHS Trust</td>
</tr>
<tr>
<td>Linda Weaver</td>
<td>Superintendent Physiotherapist, Scunthorpe Goole Hospitals Trust</td>
</tr>
<tr>
<td>Susan Weeks</td>
<td>Lecturer, University of Huddersfield</td>
</tr>
<tr>
<td>Mark Whiteley</td>
<td>Senior II Physiotherapist, Airedale NHS Trust</td>
</tr>
<tr>
<td>Catherine Carus</td>
<td>Senior I Physiotherapist, Bradford Royal Infirmary</td>
</tr>
</tbody>
</table>
Appendix B

Search strategies for the effectiveness of physiotherapy interventions

Original Search Strategy for the period up to 1996

The Yorkshire Group searched the following key words:
Whiplash
Cervical spine
Physio/physical therapy
Management/evaluation/intervention/treatment
Education/advice/collars/prophylaxis
Exercise/mobilisation/manipulation
Compensation
Prognosis
Chronic Pain/whiplash
Pain/whiplash
Acute pain/whiplash

The original search was carried out through the Chartered Society of Physiotherapy (CSP) database and searched the following indices:
Physiotherapy Index (1986–1996)
Rehabilitation Index (1987–1996)
Occupational Therapy Index (1986–1996)
MEDLINE (Index Medicus, 1986–1996)
CINAHL (Cumulative Index to Nursing and Allied Health 1983–1996)
CSP Physiotherapy Research Projects Database
CSP Physiotherapy Documents Database
WCPT proceedings (1995 only)
The Cochrane Database of Systematic Reviews
The Database of Abstracts of Reviews of Effectiveness
EMBASE
AMED
BIDS (Includes psychology journals)

The time period over which databases were searched was determined by the parameters of the CSP’s database.
Search strategy for period 1995 to January 2001

The keywords ‘whiplash’ or ‘whiplash injuries’ were searched (or mapped to search terms and expanded where available) on the following databases: Medline, CINAHL, AMED, Science Citation Index (SCI), Social Science Citation Index (SSCI), BIDS, and EDINA Ei Compendex. In addition, ‘cervical spine’ was combined with other keywords ‘manual therapy’, ‘mobilisation’, ‘mobilization’, ‘traction’, ‘exercise’, ‘physiotherapy’, ‘physical therapy’, ‘electrotherapy’, ‘laser’, ‘ultrasound’, ‘electrical stimulation’, ‘short wave’, ‘collars’, ‘joint instability’ on Medline, CINAHL and AMED.

Proceedings from IFOMT, MPAA and WCPT conferences were also hand searched from 1996 to 2001.

Update searches after January 2001

A keyword search for ‘whiplash’ on Medline, CINAHL, AMED, SCI, SSCI, The Cochrane Library, PEDro, Applied Social Science Index and Abstracts, & Expanded Academic Index was carried out for the update searches. Databases were searched from 1995 if they had not been included in previous searches.

Final update search strategies February/March 2004

MEDLINE

Limits English language, human, 2001 –

Keywords:
whiplash OR whiplash injuries
OR
cervical vertebrae subheadings injuries OR physiopathology AND (neck injuries subheadings diagnosis, etiology, physiopathology, rehabilitation, therapy OR manipulation spinal OR physical therapy techniques OR exercise therapy OR movement OR early ambulation OR traction OR electric stimulation OR electric stimulation therapy OR laser therapy low level OR deceleration OR acceleration OR ultrasonics OR short wave therapy OR orthotic devices OR joint instability)

EMBASE – Physical Medicine and Rehabilitation

Limits English Language, 1995 –

Keywords:
whiplash OR whiplash injuries
OR
(cervical spine injury OR neck pain) AND (traction therapy OR physiotherapy OR manipulative medicine OR chiropractic spinal manipulation OR spinal manipulation OR electrostimulation OR orthoses OR spine stabilization OR ultrasound therapy OR low level laser therapy OR joint instability)

AMED

Limits English Language, 2001 –

Keywords:
whiplash OR whiplash injuries
OR
(neck injuries OR cervical vertebrae) AND (manipulation OR chiropractic OR manipulation, osteopathic OR musculoskeletal manipulations OR spinal manipulation OR physiotherapy OR physiotherapy methods OR movement OR early ambulation OR traction OR electric stimulation OR electroacupuncture OR transcutaneous electric nerve stimulation OR laser therapy low level OR acceleration OR ultrasonics OR orthotic devices OR short wave diathermy OR joint instability)
CINAHL
Limits English Language, 2001 –

Keywords:
whiplash OR whiplash injuries
OR
(cervical vertebrae subheadings injuries or physiopathology OR neck injuries subheadings etiology or physiopathology or rehabilitation or therapy) AND (physical therapy OR manual therapy OR therapeutic exercise OR movement OR early ambulation OR traction OR electric stimulation OR electric stimulation functional OR electric stimulation neuromuscular OR lasers OR ultrasonics OR diathermy OR orthoses OR orthoses design OR joint instability)

Also searched the following databases for keyword ‘whiplash’

PEDro Database
The Cochrane Library, 2004 issue 1 (Cochrane Database of Systematic Reviews and DARE)
Hand search of IFOMT 7th conference proceedings (2000) incorporating the 11th MPAA conference and 12th MPA conference available from
http://www.physiotherapy.asn.au/conferences/proceedings/Table%20of%20Contents.pdf
Appendix C

Evidence tables of studies included in the evidence review

Appendix C includes:

Table 1 Evidence table of the 12 RCTs relating to WAD included in the evidence review and one RCT relating to chronic neck pain

Table 2 Evidence table of systematic reviews on non-specific neck pain

Table 3 Evidence table of systematic reviews on WAD, which were used to identify relevant individual studies

Table 1 Evidence table of the 12 RCTs relating to WAD included in the evidence review and one RCT relating to chronic neck pain

<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonk et al, 2000</td>
<td></td>
<td>Group A (n=47): Active therapy – 3 sessions first week & 2 in each of next 2 weeks. In each session ice applied for 10 minutes, mobilisation by therapist through full tolerable range of motion with patient, followed by active mobilisation by patient as described in study by Mealy and then strengthening & isometric exercises. First week in supine position, second week patient seated. In third week patient given interscapular muscle strengthening exercises & advice on maintaining normal posture. Told not to use a collar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group B (n=50): Collar – Asked to wear a collar for 3 weeks during day. Given no physiotherapy, activity, exercises or mobilisation. Both groups could use analgesics or anti-inflammatories as they wished.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group C (n=50): Healthy subjects – comparison group</td>
</tr>
</tbody>
</table>
Participants

Country: Germany
Setting of study: Emergency department
Inclusion: Accident victims of rear-end collisions, between 16 & 60 years old & within 3 days of accident
Exclusion: prior neurological disease, prior neck injury, x-rays showing old fractures or skeletal malformations, spondyloarthropathy, symptom onset more than 3 days after accident & grade 3 or 4 whiplash-associated disorder.

Outcomes

Follow up: 12 weeks
Outcomes: Neck pain, neck stiffness, headache, shoulder pain, arm pain & neck ROM.
Neck mobility measured in flexion/extension by difference between smallest & greatest distance of chin to sternal notch. Lateral flexion & rotation measured with goniometer. Left & right side angles added to provide total lateral flexion.

Results (incl. withdrawals)

- 6 (4%) withdrawals, all from group A
- Neck pain:
 - Onset: 98% group A, 96% Group B & 8% Group C.
 - 6 weeks: 11% Group A, 62% Group B.
 - 12 weeks: 2% Group A, 16% Group B.
- Flexion/extension [mean(SD)]:
 - 19.9cm(1.8) Healthy group.
 - 6 weeks: 19.2 (2.0)cm Group A, 17.7 (4.6)cm Group B.
 - 12 weeks: 19.4 (1.8) Group A, 18.3 (1.6)cm Group B.
- Lateral flexion [mean(SD)]:
 - 88.1(4.4)° Healthy group.
 - 6 weeks: 89.8(6.6)° Group A, 82.5(6.5)° Group B.
 - 12 weeks: 88.3(4.2)° Group A, 85.7(4.9)° Group B.
- Rotation [mean(SD)]:
 - 178.2(5.3)° Healthy group.
 - 6 weeks: 176.9(8.0)° Group A, 165.1(16.7)° Group B.
 - 12 weeks: 178.5(4.6)° Group A, 175.4(8.1)° Group B.

Conclusions & comments

Study confirms that active therapy compared to use of collar and rest results in significant difference in rate of recovery.
Comments
Not sure if differences sig. or if intention-to-treat analysis used.
Only measured healthy group once and everything compared to their initial results.
Borchgrevink et al, 1998

<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eligibility? Yes</td>
<td>Group A (n=82): Act as usual – instructed to act as usual with no sick leave or collar</td>
</tr>
<tr>
<td></td>
<td>Random? Yes</td>
<td>Group B (n=96): Immobilisation – 14 days sick leave and immobilised with a soft neck collar for 14 days (alternating 2 hours on & 2 hours off & continuously at night)</td>
</tr>
<tr>
<td></td>
<td>Concealed? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baseline? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind subjects? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind therapists? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind assessment? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85% follow up? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITT? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groups compared? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points & variation? Yes</td>
<td></td>
</tr>
<tr>
<td>Score: 6/10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fitz-Ritson, 1995

<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eligibility? No</td>
<td>Both groups continued with chiropractic treatments. Each group did a series of exercises for 8 weeks, 5 days per week.</td>
</tr>
<tr>
<td></td>
<td>Random? Yes</td>
<td>Group A (n=15): 4 levels (10 exercises in each) with 2 weeks on each level. Levels: a) range of motion, b) stretching, c) isometric-toning & d) isokinetic-strengthening</td>
</tr>
<tr>
<td></td>
<td>Concealed? No</td>
<td>Group B (n=15): phasic neck exercises – 2 levels (8 exercises in each) with 4 weeks on each level. For example, Level 1, exercise 1: lying, rotate the eyes and head to same side; exercise 2: lying?, rotate eyes & head to the same side. Level 2, exercise 7: moving eye-head-neck-arm in coordinated pattern; exercise 8: rotate eye-head-neck-trunk, looking as far behind as possible.</td>
</tr>
<tr>
<td></td>
<td>Baseline? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind subjects? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind therapists? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind assessment? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85% follow up? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITT? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groups compared? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points & variation? Yes</td>
<td></td>
</tr>
<tr>
<td>Score: 3/10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Participants

Country: Norway
Setting of study: Emergency clinic
Inclusion criteria: Patients with neck sprain injury caused by private car accident with reported material damage from rear-end, side- or head-on collisions, aged between 18 and 70 years.
Exclusion criteria: Patients in bus or large-vehicle accidents; radiographically disclosed vertebral fractures; clinical signs of nerve root compression; simultaneous concussion or other head trauma; & those who lived too far from centre.

Outcomes

Follow up: 14 days, 6 weeks & 6 months – questionnaires & physical examinations.
Outcomes: Post-intervention: Patients’ subjective symptoms related to neck injury; Neurologic investigation; Neck movement – using instrument like the Cybex Model DEI-320; Shoulder movement. At 2 & 6 weeks and 6 months after accident: neck pain (VAS), neck stiffness & headache (VAS)
Also measured shoulder pain, back pain, chest pain, difficulties with memory, difficulties with concentration, buzzing ears, dizziness, nausea, diminished vision, insomnia, analgesia, depression & anxiety.

Results (incl. withdrawals)

- 23 (14 group A & 9 group B) dropped out & did not attend at 6 months. Also incomplete questionnaires: 16 at intake, 10 at 6 weeks & 15 at 6 months. Neck pain (VAS)
 Baseline: 33.0 ± 2.5 group A & 38.1 ± 2.6 group B.
 6 weeks: 32.9 ± 3.9 group A & 29.7 ± 2.7 group B.
 6 months: 26.6 ± 2.6 group A & 31.1 ±3.2 group B.
- Headache (VAS)
 Baseline: 24.2 ± 2.7 group A & 33.3 ± 3.0 group B.
 6 weeks: 28.2 ± 3.6 group A & 27.8 ± 3.0 group B.
 6 months: 21.4 ± 3.4 group A & 33.2 ± 3.2 group B.
- 8 (10%) group A & 7 (7%) group B on sick leave at 6 months.
- Global improvement: More symptoms: 17 (21%) group A & 21 (22%) group B. As before: 11 (13%) group A & 14 (15%) group B. Less symptoms: 54(66%) & 60 (63%) group B. 20% in both groups reported feeling worse at 6 months than at 14 days after accident.
- No difference between groups in either neck or shoulder movements at either 14 days or 6 months

Conclusions & comments

Patients who were instructed to continue engaging in their normal activities (act as usual) after neck sprain injury had a better outcome than patients who took sick leave from work and who were immobilised with soft neck collars during the first 14 days after the accident.

Comments
Differences at baseline in neck pain VAS mean little difference in improvement between 2 groups. No intention-to-treat, several incomplete questionnaires at each follow up, but don’t know from which group.

Patients

Country: Canada
Setting of study: Clinic
Inclusion criteria: Patients with pain 12 weeks after vehicle accident; increased pain/soreness/stiffness of cervical musculature with sport or activity requiring rapid neck movements.
Exclusion criteria: None given.

Outcomes

Follow up: 8 weeks, administered by receptionist.
Outcomes: Neck Pain Disability Index.

Results (incl. withdrawals)

No one lost to follow up or withdrawn from study.
Average pre-therapy NPDI: 59.5 group A vs. 60 group B.
Average post-therapy NPDI: 55.1 group A vs. 31 group B.

Comments

- It has been shown that a phasic component to neck movement and its restoration seems to be important in the rehabilitation of the injured cervical spine.
- Groups not compared with each other.
- Baseline differences in groups in age, number of patients having >1 accident, gender.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foley-Nolan et al, 1992</td>
<td>Eligibility? Yes Random? Yes Concealed? Yes Baseline? No Blind subjects? Yes Blind therapists? Yes Blind assessment? Yes 85% follow up? Yes ITT? Yes Groups compared? Yes Points & variation? Yes</td>
<td>Group A (n=20): Active PEMT unit consisting of soft collar containing flexible miniaturised short wave diathermy generator (100gms weight). Generator produced pulsed magnetic field in treatment area with mean power 1.5 mWatts/cm² at patient’s surface. Nominal frequency of unit was 27MHz, with pulsed burst width 60 microseconds and repetition frequency of 450 per second. Each unit had on/off switch & light to confirm system operational. Powered by two 9 volt batteries replaced at 4 weeks. Group B (n=20): Dummy unit with generator of same weight incorporated but not producing PEMT waves. Also had on/off switch & indicator light and was battery operated. Each unit had identity number and only agent of manufacturer (H & K Electronics) knew which were active. Collars to be worn 8 hours per day for the 12 weeks of study. NSAIDs prescribed and amount taken recorded. Patients advised to mobilise neck hourly with each of 6 cervical movements 5 times each within pain-free range. If unhappy with progress at 4 weeks referred to physio for 2 sessions per week for 6 weeks tailored to individual needs (typically included hot pack, pulsed short wave diathermy, ultrasound & active repetitive movements).</td>
</tr>
</tbody>
</table>
Participants

Country: Ireland
Setting of study: A & E Dept
Inclusion criteria: Patients over 18 years old with acute whiplash injuries from rear-end collisions.
Exclusion criteria: Presenting at A & E >72 hours after injury; active inflammatory, infective, neoplastic, or metastatic bone disease involving cervical spine; cervical fracture; head injury with loss of consciousness; impaired reflexes indicative of cervical root lesion.

Follow up:
- 2, 4 & 12 weeks

Outcomes:
- Pain: 10cm VAS
- Range of neck movement: graded as full, 2/3 normal, 1/3 normal or absent (max. 6 pts total ROM)
- Subjective assessment of progress: patients perceived progress, 9-pt scale: worst possible, much worse, moderately worse, mildly worse, no change, mildly better, moderately better, much better and completely well.

Results (incl. withdrawals)

None lost to follow up
Neck pain VAS (mean?): baseline, 6.75 group A vs. 6.25 group B (NS); 4 weeks, 2.5 group A vs. 5.00 group B (p<0.05); 12 weeks, 1.5 group A vs. 2.25 group B (NS).
Neck movement (??): baseline, 2.83 group A vs. 3.66 group B (p<0.05); 4 weeks, 4.0 group A vs. 3.33 group B (NS); 12 weeks, 4.5 group A vs. 4.00 group B (p<0.05).
Patient perceived improvement as ‘moderately’ or ‘much’ better:
- 4 weeks, 17(85%) group A vs. 7 (35%) group B (p=0.001);
- 12 weeks, 85% group A vs. 60% group B.

54 of original 250 people not attending at 6 weeks.
At 6 weeks
- No pain: 43/104 in group A & 31/92 in group B.
- Pain ‘better’: 46/104 in group A & 42/92 in group B.
- Pain ‘same’: 10/104 in group A & 12/92 in group B.
- Pain ‘worse’: 5/104 in group A & 7/92 in group B.

Of 86 (83%) of soft collar wearers expressing a preference, 68 (79%) said the collar provided some degree of pain relief.

Conclusions & comments

The significant patient improvement as judged by both patient in terms of pain and subjective assessment and clinician in terms of ROM, strongly suggests that PEMT has a beneficial effect in the early management of acute whiplash injury.

Comments

Most patients with whiplash injury can expect to have pain for >6 weeks. Soft cervical collars do not affect the severity or duration of pain >=6 weeks post-injury.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irnich et al, 2001</td>
<td>Eligibility? Yes</td>
<td>Group A (n=56): Acupuncture – according to traditional Chinese medicine rules, including diagnostic palpation for sensitive spots.</td>
</tr>
<tr>
<td></td>
<td>Random? Yes</td>
<td>Group B (n=60): Massage – conventional Western massage, including effleurage, petrissage, friction, tapotement & vibration. Did not include spinal manipulation or non-conventional techniques.</td>
</tr>
<tr>
<td></td>
<td>Concealed? No</td>
<td>Group C (n=61): Placebo – sham laser acupuncture with laser pen (Seirin International, Fort Lauderdale, USA) emitting only red light, accompanied by visual & acoustic signals. Diagnostic palpation same as for acupuncture group.</td>
</tr>
<tr>
<td></td>
<td>Baseline? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind subjects? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind therapists? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind assessment? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85% follow up? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITT? No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groups compared? Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points & variation? Yes</td>
<td></td>
</tr>
<tr>
<td>Score: 7/10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

McKinney et al, 1989	Eligibility? Yes	All fitted with soft foam collar and given analgesic (co- dydramol 1,000 mg 6-hourly).
	Random? Yes	Group A (n=33): Rest – general advice to mobilise after initial rest period of 10–14 days.
	Concealed? No	Group B (n=71): Physiotherapy – assessed by physiotherapist and tailored programme devised from resources available at the hospital. Typically, combination of hot & cold applications, pulsed short wave diathermy, hydrotherapy, traction, & active & passive repetitive movements. Each patient had 10 hours of physiotherapy over 6 weeks.
	Baseline? Yes	Group C (n=66): Advice – assessed by physiotherapist & given verbal and reinforcing written instruction on correct posture, use of analgesia and collar, and on use of heat sources and muscle relaxation. Encourage to perform mobilising exercises that were demonstrated. Emphasis on maintaining good range of neck movements and on correcting posture even if initially causes more discomfort. Advised to restrict use of collar to short periods when neck vulnerable to sudden jolting. Session lasted typically 30 minutes.
	Blind subjects? No	
	Blind therapists? No	
	Blind assessment? Yes	
	85% follow up? No	
	ITT? No	
	Groups compared? Yes	
	Points & variation? Yes	
Score: 5/10		
Participants

Country: Germany
Setting of study: out-patient departments.
Inclusion criteria: Patients with painful restriction of cervical spine mobility for more than 1 month & no treatment in 2 weeks before entering study.
Exclusion criteria: previous surgery, dislocation, fracture, neurological deficits, systemic disorders or contraindications to treatment.

Outcomes

Follow up: Immediately & 3 days after first treatment and immediately & a week after last treatment. Followed up at 3 months.
Primary outcome: Change in maximum pain related to motion in most affected direction (100 point VAS).
Secondary outcomes: Active ROM (3D ultrasound real time motion analyser (Zebris Medizinintechnik, Germany). Intensity of direction related pain assessed by patient (VAS). Pressure pain threshold bilaterally at 3 sites & individual maximum point using digital pressure algometer. Changes in spontaneous pain, motion related pain & global complaints (7 pt scale). SF-36 health survey.

Results (incl. withdrawals)

12 withdrawn (5 group A, 3 group B & 4 group C). Mean improvement in VAS pain at 1 week: 24.22 (16.5-31.9) Group A, 7.89 (0.6-15.2) Group B, 17.28 (10.0-24.6) Group C. Sig difference group A vs. group B. Not sig. group A vs. group C. Differences between groups more distinct in subgroup who had myofascial pain & those who had pain > 5 years. Acupuncture group had best results in secondary outcomes immediately and 1 week after therapy, but no longer significant after 3 months. Quality of life measures improved in all groups, but no significant difference between groups. Side effects: 17 (33%) reported mild reactions during acupuncture, slight pain or vegetative reactions. Mild reactions also in 4 (7%) of massage group and 12 (21%) in sham laser group. No serious adverse reactions reported.

Conclusions & comments

Trial showed that acupuncture is a safe and effective form of treatment for people with chronic neck pain. Effects on pain and mobility were better than those achieved with conventional massage.

Participants

Country: Northern Ireland
Setting of study: A & E dept.
Inclusion criteria: Patients with whiplash injury within 48 hours of road accident.
Exclusion criteria: Radiological or clinical evidence of fracture or dislocation or pre-existing degenerative diseases.

Follow up:

1, 2 & 3 months & 2 years.
Outcomes: Pain 10cm VAS. ROM.

Results (incl. withdrawals)

Randomisation to the group allocated ‘rest’ stopped early in trial for ethical reasons. Neck pain (median VAS): baseline, 5.6 group A, 5.32 group B & 5.3 group C; 1 month, 4.97 group A, 3.28 group B & 3.37 group C; 2 months, 3.0 group A, 1.94 group B & 1.82 group C.

Lateral flexion ROM [mean (SD)]: baseline, 44.4 (14.7) group A, 45.6 (18.5) group B & 47.3 (20.7) group C; 1 month, 41.8 (18.9) group A, 53.3 (20.3) group B & 54.1 (19.7) group C; 2 months, 55.1 (14.8) group A, 64.0 (12.9) group B & 64.1 (12.7) group C.

Those available at 2 years: 12 (46%) group A, 24 (44%) group B & 11 (23%) group C had persistent symptoms.

At 2 months there appeared to be no difference in the effectiveness between out-patient physiotherapy and home mobilisation. Advice to mobilise in the early phase after neck injury reduces the number of patients with symptoms at two years and is superior to manipulative physiotherapy. Prolonged wearing of a collar is associated with persistence of symptoms.

Comments
<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennie & Agambar, 1990 41</td>
<td>Eligibility? Yes Random? No Concealed? No Baseline? No Blind subjects? No Blind therapists? No Blind assessment? No 85% follow up? Yes ITT? No Groups compared? Yes Points & variation? Yes</td>
<td>Group A (n=74): Collar – standard treatment of 2 weeks rest in either soft collar or moulded thermoplastic polyethylene foam. Patients reviewed & taught programme of active exercises. At 6–8 weeks those who did not improve or deteriorated were referred for physio. Group B (n=61): Traction – active treatment by traction and exercises. Patients attended twice per week and had intermittent halter traction for 10 minutes: 12 lb (5.4kg) applied for 30 seconds with 30 second rest periods. Traction applied in extension, neutral position or flexion for upper, mid or lower neck pain respectively. Patients had advice on neck care & sleeping posture & between attendances asked to perform simple neck & shoulder exercises.</td>
</tr>
</tbody>
</table>
Participants

<table>
<thead>
<tr>
<th>Country</th>
<th>Setting of study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>Research clinic.</td>
<td>Patients with soft tissue injury of the neck sustained in road traffic accidents.</td>
<td>None given.</td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Follow up</th>
<th>Outcomes</th>
<th>Results (incl. withdrawals)</th>
<th>Conclusions & comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 8 weeks after accident</td>
<td>Pain VAS. Cervical movement.</td>
<td>10 withdrawn from study, 5 in each in group. Neck pain (mean VAS (SEM)): baseline, 5.71 (0.44) group A & 6.44 (0.41) group B; 4 weeks, 2.85 (0.57) group A vs. 5.08 (0.48) group B (p<0.05); 8 weeks, 1.69 (0.43) group A vs. 3.94 (0.58) group B (p<0.0125). ROM [mean (SEM)]: baseline, 19.92 (1.74) group A vs. 25.00 (2.17) group B; 4 weeks, 29.03 (2.12) group A vs. 27.56 (2.09) group B; 8 weeks, 34.11 (1.5) group A vs. 29.57 (1.61) group B (p<0.05).</td>
<td>Results confirmed expectations that initial immobility after whiplash injuries gives rise to prolonged symptoms, whereas a more rapid improvement can be achieved by early active management without any consequent increase in discomfort.</td>
</tr>
<tr>
<td>continued until patient felt recovered or up to 5 months later</td>
<td>Total neck mobility – measured in degrees on goniometer as sum of flexion, extension, left & right lateral flexion and left & right rotation. Pain – four sites (neck, arm, back, & head) using 100-pt VAS</td>
<td>3 from group A excluded from both assessments, 23 from 6-8 week & 20 from 5 month reviews. Average % reduction neck pain VAS (no. of patients): 6-8 weeks, 64 (61) group A & 68 (48) group B; 5 months, 88 (70) group A & 90 (58) group B. Total movement [mean (range)]: baseline, 288 (85-455) group A & 276 (85-425) group B; 6-8 weeks, 361 (190-460) group A & 366 (140-470) group B; 5 months, 377 (190-460) group A & 366 (140-470) group B. Average days off work [mean (median)]: 26 (17) group A & 31 (11) group B out of 57 people in group A & 48 in group B.</td>
<td>We cannot recommend the use of the active treatment we have described, and feel that any alternative should be rigorously evaluated because of the expense and resources involved.</td>
</tr>
</tbody>
</table>

Comments

- Only 8 week follow up.
- Not true randomisation.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodological quality</th>
<th>Interventions</th>
</tr>
</thead>
</table>
| Provinciali et al, 1996 | | **Group A (n=30): Multimodal treatment:**
- Relaxation training based on diaphragmatic breathing in supine position;
- Active reduction of cervical & lumbar lordosis, based on suggestions provided by Neck School (Sweeney, 1992).
- Psychological support to reduce anxiety & limit emotional influence (Radanov, 1991).
- Eye fixation exercises in order to prevent dizziness, according to technique (Shutty, 1991).
Group B (n=30): Physical agents:
TENS (especially applied to Arnold’s nerve) & PEMT (Foley-Nolan, 1990), and Ultrasound (1.5 Watt/cm²) and calcic iontophoresis with calcium chloride (Foreman, 1995).
Each patient had 10, 1-hour treatment sessions over two-week period. |
| Eligibility? Yes | Random? Yes | |
| Baseline? Yes | Blind subjects? No | |
| Blind assessment? Yes | 85% follow up? Yes | |
| Groups compared? Yes | Points & variation? Yes | |
| Score: 6/10 | | |
| Rosenfeld et al, 2000 | | **Group A (n=21): Active 96hrs** – active exercise & posture protocol consistent with McKenzie’s principles. Gentle, active, small-range & amplitude rotational movements of neck, repeated 10 times in both directions every waking hour. Movements made to maximum comfortable range. Patients taught to recognise warning signs & adjust amplitude and/or number of movements. Treated within 96 hours of trauma, reassessed after 20 days using dynamic mechanical evaluation consistent with McKenzie protocol. Individual program added if symptoms persisted (cervical retraction, extension, flexion, rotation, lateral flexion or combination of these depending which were beneficial during assessment).
Group B (n=23): Standard 96 hrs – Leaflet with info on injury mechanisms, advice on suitable activities & postural correction given within 96 hours of trauma. Advised to rest neck during first weeks after injury and that wearing soft collar could provide comfort & prevent excessive movement. Also advised to begin performing active movements 2 or 3 times a day a few weeks after injury.
Group C (n=22): Active 14 days – as Group A with delay 14 days.
Group D (n=22): Standard 14 days – as Group B with delay 14 days. |
| Eligibility? Yes | Random? Yes | |
| Concealed? No | Blind subjects? No | |
| Blind assessment? No | 85% follow up? Yes | |
| Groups compared? Yes | Points & variation? No | |
| Score: 4/10 | | |
Participants

Country: Italy
Setting of study: Not given
Inclusion criteria: Patients with “neck sprain” following car accident; within 60 days of injury; regular performance of job or profession before accident.
Exclusion criteria: Infective, neoplastic, metabolic or inflammatory bone disease; x-ray evidence of traumatic or severe degenerative lesions of cervical spine; symptom exaggeration with intention of enhancing financial rewards.

Outcomes

Follow up: Assessment before, immediately after treatment, one & 6 months after baseline assessment.
Outcomes: Cervical ROM – maximal flexion, declination & rotation in ordinal scale (0 to 6). Pain – 10 pt VAS. Self-rating scale – subjective judgement of changes from baseline (+3: total recovery; +2: marked improvement; +1: slight improvement; 0: no change; -1: slight impairment; -2: marked impairment; -3: complete disability).
Return to work – time from injury to return to work.

Results (incl. withdrawals)

Median ROM: baseline, 3.8 group A vs. 3.9 group B; 6 months, 5.5 group A vs. 4.6 group B.
Pain (median VAS): 6.8 group A vs. 7.4 group B; 6 months, 1.9 group A vs. 4.8 group B.
Self-rating scale (median): post-therapy, 1 group A vs. 0 group B; 6 months, 2 group A vs. –1 group B.
29/30 in group A & 24/30 in group B returned to work by 6 months. Mean (SD) delay in returning to work, 38.4 (10.5) group A & 54.3 (18.4) in group B.

Conclusions & comments

Results confirm hypothesis of multifactorial involvement as a possible mechanism for the late whiplash syndrome.

Participants

Country: Sweden
Setting of study: 29 primary care units, 3 emergency wards & several private clinics referred patients to the study.
Inclusion: acute whiplash injury caused by motor vehicle accident within 96 hours of trauma.
Exclusion: cervical fractures, cervical dislocation, head injury, previous symptomatic chronic neck problems, alcohol abuse, dementia, serious mental diseases or diseases likely to cause death before the end of the study.

Outcomes

Follow up: 6 months
Outcomes: Range of motion measured by medical lab technologist or registered nurse. Cervical measurement system used to measure lateral flexion, extension-flexion & rotation using an inclinometer & compass for rotation. Pain measured on VAS.

Results (incl. withdrawals)

9 (9%) withdrawals, don’t know which groups.
Change in mean pain VAS: -30 group A, +0.74 Group B, -15 Group C & -7.1 Group D (sig. difference between groups).
No pain (VAS=0): 8 (38%) Group A, 4 (17%) Group B, 5 (23%) Group C & 1 (5%) Group D.
Low pain (VAS<=10): 11 (52%) Group A, 7 (30%) Group B, 8 (36%) Group C & 2 (9%) Group D.
Change in mean total ROM: +51.9 Group A, +26.2 Group B, +23.3 Group C & +44.6 Group D (no sig. difference between groups).
Combined time & treatment effect on pain.

Conclusions & comments

Early treatment with frequently repeated active submaximal movements combined with mechanical diagnosis & therapy is more effective in reducing pain than treatment with initial rest, recommendation of soft collar and a gradual introduction of home exercises.
Comments
Not sure if differences sig. or if intention-to-treat analysis used.
Study complicated by 4-group design.
Methodological Quality Assessment: PEDro Scale

Criteria

1. Eligibility criteria specified?
2. Random allocation of participants to groups?
3. Allocation concealed?
4. Groups similar at baseline for most important prognostic factors?
5. Blinding of participants?
6. Blinding of those administering therapy?
7. Blinding of outcome assessors?
8. Follow up of more than 85% of participants initially allocated to groups?
9. Intention-to-treat analysis used?
10. Between group statistical comparisons reported?
11. Point and variability measures given?

Key

Eligibility?
Random?
Concealed?
Baseline?
Blind subjects?
Blind therapists?
Blind assessment?
85% follow up?
ITT?
Groups compared?
Points & variation?

Score out of 10, items 2 to 11 (item 1 not included, as this indicates external, and other items measure internal, validity)
<table>
<thead>
<tr>
<th>Participants</th>
<th>Outcomes</th>
<th>Results (incl. withdrawals)</th>
<th>Conclusions & comments</th>
</tr>
</thead>
</table>
| **Country:** Sweden
Setting of study: Emergency department.
Inclusion: Patients with acute whiplash & report of acceleration-deceleration movement of head without direct head trauma. Also aged between 18 & 60 years & good ability to understand written Swedish.
Exclusion: Previous history of neck injury due to accident. | **Follow up:** 6 months.
Compliance poor – 41% completed exercises >5 days per week.
Pain mean (SD) VAS.
3 months: 2.2 (2.0) Group A, 2.6 (2.4) Group B.
6 months: 2.0 (1.7) Group A, 1.8 (1.9) Group B.
Left rotation mean (SD) ROM.
3 months: 59.9 (12.9) Group A, 67.4 (11.1) Group B.
6 months: 60.3 (12.9) Group A, 69.0 (11.6) Group B.
Right rotation mean (SD) ROM.
3 months: 59.7 (14.8) Group A, 60.9 (12.2) Group B.
6 months: 60.6 (12.4) Group A, 63.9 (13.0) Group B. | Small number of common exercises, done regularly, seem to be sufficient treatment for some patients with acute WAD. More supervision during first weeks might increase compliance. Patients’ perceived disability & confidence in completing daily activities important factors in long-term symptomatology.
Comments Not sure if differences sig. or if intention-to-treat analysis used. Poor compliance may also have effect on results. |
Table 2. Evidence table of systematic reviews on non-specific neck pain

<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albright et al, 2001</td>
<td>Include: Patients with non-specific neck pain with or without pain radiating to extremities. Exclude: studies with mixed acute & chronic neck pain.</td>
<td>Include: massage, thermal therapy (hot or cold packs), electrical stimulation, electromyographic (EMG) biofeedback, TENS, therapeutic ultrasound, therapeutic exercises, & combinations. Control groups with active interventions & concurrent interventions if given same way to both groups. Exclude: concurrent interventions not given same way to experimental & control groups.</td>
<td>Include: RCTs, CCTs, case control or cohort studies of >10 subjects, written in English, French or Spanish languages. Exclude: Abstracts only.</td>
</tr>
</tbody>
</table>
Outcomes | Search strategy | Results | Conclusions |
---|---|---|---|
Include: Functional status, pain, ability to work, patient global improvement, patient satisfaction, quality of life. | Medline, Embase, Current contents, CINAHL, CCTR – all searched to 1st July 2000. Register of Cochrane Rehabilitation & Related Therapies Field & Cochrane Musculoskeletal Group and PEDro. Reference lists screened, content experts contacted. | **Acute Manual Traction:** Pennie 1990 & British Assoc. of Physical Medicine 1966 excluded. **TENS** (Level I - RCT): Nordemar 1981 – RCT; N=20; 1) TENS (15 mins, 3 per wk at 0.2 milliseconds, 80Hz) vs. 2) Collar (<3 days); no neurological signs; No difference in patient-assessed pain after 1 wk or 3 months. **Interventions where no evidence found:** EMG biofeedback, thermotherapy, massage, electrical stimulation, therapeutic exercises, or combined interventions. Mealy 1986, Borghgreivnik 1998 & McKinney 1989 excluded. **Chronic Therapeutic exercises** (Level I - RCT): Vasseljen 1995, Friedrich 1996, Fitz-Ritson 1995 & Taimela 2000 excluded. Goldie 1970 – CCT; N=47; sig. clinically important patient global improvement in isometric exercise group over no treatment group, relative risk difference 41%. **Group fitness classes:** 2 RCTs, Klemetti 1997 & Takala 1994 (N=195) showed no difference between group classes & control group for pain or sick leave at 1 or 6 months. Revel 1994 – RCT; N=60; Individual sessions of exercises (incl. proprioceptive re-education – slow neck movements to follow moving target) relieved pain by 36% & improved functional status by 33% relative to waiting list controls. **Mechanical traction** (Level II - CCT): Goldie 1970 – CCT; N=73; patient-assessed improvement in traction group relative to no treatment group; low quality (0/5). Zylbergold 1985, Lee 1996 & British Assoc. of Physical Medicine 1966 excluded. **Therapeutic ultrasound** (Level I – RCT): Lee 1997 – RCT; N=26; myofascial trigger point neck pain; no difference in pain between ultrasound & placebo ultrasound. Other outcomes not assessed. **No evidence found:** EMG biofeedback, massage, thermotherapy, electrical stimulation, TENS, & combined rehabilitation interventions. Persson 1997 also excluded. | There is scientific evidence to support and recommend use of proprioceptive & therapeutic exercises for chronic neck pain. There is a lack of evidence at present regarding whether to include or exclude use of thermotherapy, therapeutic massage, EMG biofeedback, mechanical traction, therapeutic ultrasound, TENS, electrical stimulation, & combined rehab interventions in daily practice of physical rehabilitation of patients with acute & chronic neck pain. |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross et al, 2002a</td>
<td>Include: mechanical neck disorders, neck disorders with headache of cervical origin, neck disorders with radicular signs and symptoms. Exclude: neck disorders with long tract signs, those caused by rheumatic or neurological diseases, fractures or dislocations, non-mechanical headache.</td>
<td>Manipulation, manipulation combined with mobilisation, manipulation combined with other modalities, manipulation combined with exercise (low-technology or high technology), multimodal care (manipulation & other manual therapies). Also harm from manipulation & mobilisation were studied.</td>
<td>Therapy question: RCT, quasi-RCT, higher quality systematic reviews. Harm question: RCT, quasi-RCT, surveys, higher quality systematic reviews.</td>
</tr>
<tr>
<td>Gross et al, 2002b</td>
<td>Include: Working age (18–65 years) patients with neck or shoulder pain. Exclude: Patients with acute trauma, neoplasms, inflammatory or neurologic diseases. Studies of postoperative pain & osteoporosis.</td>
<td>Include: Studies of one or more types of patient education strategies including (but not limited to) individualized teaching (ergonomic advice, postural advice, pain management strategies), group teaching (neck school), independent study (audiovisual tapes) and combinations of methods. Exclude: Studies involving surgery & injections excluded.</td>
<td>RCTs & CCTs</td>
</tr>
</tbody>
</table>
Outcomes

Pain, disability/function, patient satisfaction.

Estimates of adverse event rate of minor (common & transient), moderate (reversible serious), major (irreversible serious) complications.

Search strategy

- Personal files of specialists, manual searches of published textbooks, reference tracking.
- Additional searches for harm: cohort studies and surveys on MEDLINE, CINAHL, EMBASE – to June 1997.

Results

- **Manipulation or mobilisation alone similar to placebo, wait period, control for pain relief.**
- **High-technology exercises superior to manipulation alone for decreasing long-term pain.**
- **Manipulation plus low technology exercises superior to manipulation alone for decreasing long-term pain.**
- **Manipulation plus low technology exercise superior to manipulation alone for patient satisfaction.**
- **Manipulation plus low-technology exercise superior to high technology exercise alone for patient satisfaction.**
- **Multi-modal care (including some manipulation/mobilisation/exercise) superior to control, other physical interventions & rest.**

Estimates for serious complications for manipulation (1 in 20,000 to 5 in 10,000,000).

Conclusions

Stronger evidence: a multi-modal management strategy using mobilisation or manipulation plus exercise relieves mechanical neck pain.

Weaker evidence: either manipulation or mobilisation alone is less beneficial than when combined with exercise. The risk rate is uncertain.

Include:

At least one outcome measure must have been used to measure response to treatment. Outcomes expected included pain, tenderness, range of motion, medication use, activities of daily living, return to work status, patient performance or costs of treatment. Primary outcome is pain.

Results

271 patients (mean age 28.7 to 43 years) in 3 RCTs with 104 patients receiving patient education interventions. Mean (SD) duration of treatment = 44.3 (17.4) days & duration of follow-up from 21 days to 84 days.

Group Teaching (Neck School):
Kamwendo (1991) – 2 group teaching methods vs. no treatment for chronic neck disorders. No sig. reduction in pain reported (p>0.05). No treatment effect for traditional neck school + compliance measures (SMD at four weeks of treatment (morning) = -0.366 [95% CI: -0.951, 0.219]) or 4 hours traditional neck school alone (SMD at four weeks of treatment (morning) = 0.073 [95% CI: -0.513, 0.659]). Not clear if any patients advised not to seek additional information – confounding may be present.

Individualized Teaching (Advice):
Koes, 1992 - anti-inflammatories, analgesics and individualized patient education (advice) vs placebo in 25 patients with neck pain. Placebo was de-tuned diathermy and de-tuned ultrasound. SMD of 0.244 (95% CI: -0.577, 1.065) at 3 weeks, not sig., remained non-significant at later follow up. Not noted if physiotherapists give additional advice or patients advised not to seek additional information. McKinney (1989) compared two individualized teaching methods in acute whiplash.

Patient education utilising individualised or group instructional strategies has not been shown to be beneficial in reducing pain for mechanical neck disorders.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross et al, 2002c</td>
<td>Include: Aged 18 or over with neck disorder grade 1 or 2. Exclude: Studies that include subjects with definite or possible neurological deficit; those with neck pain caused by other pathological entities (e.g., diffuse connective tissue diseases) & those with headache without mechanical neck disorders.</td>
<td>Include: Studies used one or more physical medicine modalities (incl. cervical orthoses, therapeutic heat or cold, traction, biofeedback, exercise, electrotherapy, phototherapies (laser therapy), & acupuncture. Exclude: Invasive therapies (injections or surgery)</td>
<td>RCT & CCT</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td>Conclusions</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Any outcomes included to measure response to treatment – primary outcome used was pain.</td>
<td>Sources: Medlars, Embase, Chirobase, Index to chiropractic literature, CINAHL; searched 1985 to Dec 1993. National Technical Information Services & Conference Proceedings Index searched for unpublished data. Science Citation Index searched. Reference lists of articles found & Science Citation Index used to track key references. Known authors, content experts, professions of chiropractic, education, medicine & physical therapy, national & international agencies, foundations & associations contacted for funded, published or unpublished research.</td>
<td>At 4 weeks, individualized education for group 3 (demonstrated mobilization exercises, verbal and written instruction on posture correction, on the use of a collar, heat sources, muscle relaxation and analgesics) gave sig. pain relief compared to group 1 (general advice about mobilization after a 10 to 14 day period of rest and use of analgesics) (SMD = -0.617 [95% CI: -1.048, -0.186]). At 6 weeks of treatment no longer any sig. difference between groups (SMD = -0.371 [95% CI: -0.796, 0.054]). Co-intervention (patient seeking additional information about their problem) was not reported. Number of trials using any one educational variable too few to make any conclusive statement of benefit, no benefit or harm in terms of reducing pain.</td>
<td>Quality: 5 high scores, 6 moderately high & 2 weak studies. Mean score 3.5, median 3. Spray & Stretch: 1 RCT, no sig. difference between active & placebo (SMD= 0.101 (95% CI –0.597, 0.799)) or control group (– 0.299 (95% CI –0.940, 0.341) p>0.05). Low statistical power. Laser therapy: 3 RCTs. Thorsen 1992, median effect size VAS-function at 2 weeks is 3.36 (95%CI 0.62, 2.38). Thorsen 1991, median effect size function is 0.80 (95%CI –4.07, 9.67). Combined p-values for subacute & chronic neck disorders, 2-tailed p-value=0.1988, chronic neck pain only 2-tailed p-values=0.6287. Treatment with laser not sig. reduce pain compared to control treatment, low power to detect. Electromagnetic therapy: 2 RCTs Foley-Nolan, 1992; acute neck pain – 4 weeks, p=0.05. Foley-Nolan, 1990; chronic neck pain – 3 weeks, p=0.02 – Combined 2 p-values=0.0089. No sig. changes at 6 & 12 weeks. Infra-red light: 1 placebo-controlled trial (Lewith 1981); chronic neck pain; Non-sig. treatment effect reported (chi-square=3.28; p=0.07). Not enough statistical power. Acupuncture: 2 RCTs. Petrie, 1983; chronic neck pain; acupuncture vs. placebo; positive treatment effect p<0.01. Loy, 1983; chronicity not specified; 87.2% improvement in 6 weeks of treatment in electroacupuncture group & 53.9% in...</td>
</tr>
<tr>
<td>Reference</td>
<td>Patients</td>
<td>Interventions</td>
<td>Study designs</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Smith et al, 2000</td>
<td>Patients with neck or back pain</td>
<td>Include: Acupuncture with or without electrical stimulation, or laser acupuncture, compared with an inactive control group. Exclude: Comparisons with other active treatments.</td>
<td>RCTs with group size ≥ 10.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Pain outcomes.</td>
<td>Sources & dates searched from & to: Medline (1966 to Aug 1998); Embase (1980 to Aug 1998); CINAHL (1982 to 1998); PsychLit (1982 to 1998); Pubmed (1998); The Cochrane Library (Issue 3, 1998); Oxford Pain Relief Database (1950 to 1994). Keywords used: Free-text search using all variants of term ‘acupuncture’ & ‘electroacupuncture’ with ‘back’, ‘lumb’, ‘sciatica’, ‘myofasci’, ‘radicul’, ‘spondy’, ‘neck’, ‘cervic’*, & ‘whiplash’ Reference lists searched.</td>
<td>Petrie & Hazleman (1986) compared 8 treatment sessions of acupuncture at 5 traditional points (20 mins, 2 times per week for 4 weeks) with sham TENS in chronic neck pain. No sig. differences in pain at 1 week and 21-28 days post-treatment. NNT=280 for acupuncture due to <50% success rate. (Oxford Pain Validity Scale=7/16). Coan (1981) compared minimum 10 treatment sessions of traditional classical oriental meridian acupuncture, with or without electrical stimulation 3 or 4 times per week with a delayed treatment control group, who had no intervention/contact. After 12 weeks, 12/15 improve on acupuncture vs. 2/15 on control, relative benefit 6.0 (95%CI 1.6 to 22) – ‘improved’ not defined. (OPVS=5/16).</td>
<td></td>
</tr>
</tbody>
</table>

Traction: 3 RCTs. Goldie, 1970; controlled trial; traction vs. analgesics, muscle relaxants & postural advice. Difference very small, no statistical analysis reported. Pennie, 1990; no sig. treatment effect reported between traction, exercise & education vs. collar and exercise. Loy, 1983, as for acupuncture. Exercise: Goldie, 1970; as for traction. Levoska 1993; active muscle training vs. passive stretching plus heat & massage; Sig. difference for active exercise (p<0.05 at 5 treatments & p<0.01 at 3 months or 1 year follow up). TENS: Nordemar, 1981; TENS vs. collar, rest, education & analgesics; SMD=-0.549 (95%CI−1.492, 0.394), no sig. difference. OPVS useful tool for assessing validity in qualitative reviews. With acupuncture for chronic back and neck pain, we found most valid trials tended to be negative. There is no convincing evidence for the analgesic efficacy of acupuncture for back or neck pain.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karjalainen et al, 2003a 145</td>
<td>Patients with subacute back pain (> 4 weeks < 3 months)</td>
<td>Multidisciplinary biopsychosocial rehabilitation for working age patients.</td>
<td>RCTs, CCTs</td>
</tr>
<tr>
<td></td>
<td>Include: Working age (18–65 years) patients with neck or shoulder pain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclude: Patients with acute trauma, neoplasms, inflammatory or neurologic diseases. Studies of postoperative pain & osteoporosis.</td>
<td>Include: Multidisciplinary in-patient or out-patient rehab program – i.e. physician’s consultation plus psychological, social or vocational intervention or combination. Exclude: Interventions consisting of medical treatment and physiotherapy only. Neck schools included in different review.</td>
<td>RCT & CCT</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td>Conclusions</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pain intensity, global status, disorder specific functional status, generic functional status or quality of life, ability to work, health care consumption and costs, patient satisfaction.</td>
<td>MEDLINE, EMBASE, PsycLIT, CENTRAL, Medic, the Science Citation Index, reference checking and consulting experts in the rehabilitation field – to November 2002 for EMBASE & MEDLINE.</td>
<td>Quality of included studies: Lindstrom (1992) 4/10, no blinding. Loisel (1997) 2/10, inadequate randomisation, no blinding, unclear baseline characteristics. Multidisciplinary rehabilitation that includes a work place visit or an occupational health care intervention helps patients return to work faster, results in less sick leave, decreases subjective disability.</td>
<td>This evidence is based on only 2 relevant trials & both had methodological shortcomings.</td>
</tr>
<tr>
<td>Sources: Medline (1966 to April 1998); PsychLIT (1967 to April 1998); Embase (1988 to April 1998); The Cochrane Library; Medic (Finnish medical database); Science Citation Index. Full search strategy given in paper. Reference lists screened; 24 experts in field of rehab consulted.</td>
<td>Quality: Jensen, 1995 - 3/10; Patient characteristics not described adequately; method of randomisation not described. Ekberg, 1994 - 2/10: Non-randomised allocation. Both studies – blinding of patients but not described for therapists; baseline characteristics differed between groups; co-interventions not avoided; intention-to-treat not used. Overall no fatal methodological flaws, although info missing on some methodological quality items. Ekberg, 1994 – 1) active multidisciplinary rehabilitation (n=53) for 8 wks, 2 hours a day, 4 days per wk (incl. physical training, info, education, social interaction, & work place visit) vs. 2) traditional treatment (n=40) (incl. physiotherapy, medication, rest, & sick leave). Dropouts: 14 (13%) at 2 years. Pain (10-pt VAS): baseline 1) 6.1, 2) 6.0; at 12 mths 1) 5.3, 2) 5.4; at 24 mths 1) 5.0, 2) 4.8. General functional status: numerical data not reported. Sick leave (days/yr): baseline 1) 28, 2) 25; at 12 mths 1) 14, 2) 22; at 24 mths 1) 12, 2) 14. Jensen, 1995 – 1) 5 wks in-patient multimodal cognitive-behavioural treatment (n=29). Behavioural component by psychologist direct to patient vs. 2) psychologist as coach to other health professionals (n=37). Dropouts: 4 (6%) at 6 mths. Pain (100mm VAS): baseline 1) 52.2, 2) 51.6; after rehab 1) 45.0, 2)42.4; at 6 mths 1)45.2, 2) 48.5. Disorder specific functional status (HAQ): baseline 1) 27.1, 2) 24.1; after rehab 1) 30.1, 2) 27.0; at 6 mths 1) 26.2, 2) 25.6. Days off in 6 mths: baseline 1) 138, 2) 140; at 12 mths 1) 110, 2) 105; at 18 mths 1) 90, 2) 90.</td>
<td>There appears to be little scientific evidence for the effectiveness of multidisciplinary biopsychosocial rehab compared with other rehab facilities on neck & shoulder pain. Multidisciplinary rehab is a commonly used intervention for chronic neck & shoulder complaints, therefore we see an urgent need for high quality trials in this field.</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Patients</td>
<td>Interventions</td>
<td>Study designs</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Kjellman et al, 1999 | Patients with on-going neck pain. | Physiotherapy or chiropractic treatment modalities. | **Include**: RCTs only, written in English or Scandinavian language.
Exclude: Studies involving back and neck pain. |
| Van der Heijden et al | Patients with back or neck pain. | Traction technique included in treatment regimen. | **Include**: Random allocation
Exclude: Abstracts, unpublished studies, alternate treatment allocation. |
Outcomes

| None given |

Search strategy

| Medline & Cinahl (1966 to 1995). Keywords used: ‘randomised’ used with free-text words, such as neck, cervical, pain, physiotherapy, physical therapy, chiropractic, exercise, rehabilitation, studies, outcomes, and evaluation. Reference lists searched. |

Results

| Quality of included studies: 9 of 27 had quality score (QS) >=50 (range 24 to 62). Worst section was in measurement of effect (patient blinded or time restriction, relevant outcome measures and blinded outcome assessment) and intervention (avoiding simultaneous treatments & comparison with placebo). Also low scores for adequate randomisation, comparable baseline characteristics & comparisons with an existing treatment modality. Small sample sizes. |

Conclusions

| Our analyses demonstrate that few randomised clinical trials on neck problems are of high methodological quality and comprise a sufficiently long follow up time. In the studies that did show higher quality, three different interventions led to a slight tendency towards positive results, but the number of publications considered was inadequate to allow general conclusions to be drawn. |

Quality

| Quality: 3 studies of neck pain; 1 scored over 50 points. Goldie & Landquist; chronic cervical pain & brachialgia: i) intermittent motorised traction (n=26) vs. ii) isometric exercises (n=24) vs. iii) no intervention (n=23). Patient global estimate of improvement at 3 weeks: i) 17/26 improved vs. ii) 17/24 vs. iii) 7/23. British Association of Physical Medicine; cervical pain; i) continuous motorised traction, hot packs & mobilising exercises (n=114) vs. ii) sham traction (positioning exercises) (n=114) vs. iii) collar (n=120) vs. iv) placebo (de-tuned, ultrashort waves) |

The available RCTs do not allow conclusions about effectiveness of cervical or lumbar traction. Therefore, intervention studies do not support common practical recommendations or clinical guidelines about traction mainly based on rationale of spinal elongation. |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>White et al, 1999</td>
<td>Include: Patients with neck pain – also studies including subjects with either neck or back pain, but not both. Exclude: Patients with headache & those with pain in multiple sites.</td>
<td>Include: Acupuncture versus control procedure. Includes needle acupuncture, electroacupuncture and laser acupuncture. Exclude: Comparisons of 2 different types of acupuncture.</td>
<td>RCTs only</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td>Conclusions</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>diseases, neck, backache, cervical, adverse effects, comparative studies, evaluation studies, outcome & process assessment, physical therapy, epidemiology, statistics, science.</td>
<td>diseases, neck, backache, cervical, adverse effects, comparative studies, evaluation studies, outcome & process assessment, physical therapy, epidemiology, statistics, science.</td>
<td>(n=66) vs. v) placebo (analgesics) (n=52). Patient global estimate of improvement at 4 weeks: i) 24/114 improved; ii) 26/114; iii) 29/120; iv) 14/66; & v) 8/52. Zylbergold & Piper; subacute cervical pain; i) continuous motorised traction (25lbs, hot packs, neck school, mobilising & isometric exercises) (n=25) vs. intermittent motorised traction (25lbs, hot packs, neck school, mobilising & isometric exercises) (n=25) vs. manual traction (hot packs, neck school, mobilising & isometric exercises) (n=25) vs. hot packs, neck school, mobilising & isometric exercises (n=25).</td>
<td>Hypothesis that acupuncture efficacious in treatment of neck pain not supported by the evidence from controlled trials. More, better designed trials of acupuncture required before can be used in management of neck pain.</td>
</tr>
</tbody>
</table>

Table 3 Evidence table of systematic reviews on WAD, which were used to identify relevant individual studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>McClune et al, 2002</td>
<td>Include: All aspects of WAD including clinical and non-clinical studies on Quebec Task Force (QTF) grades 0-III. Exclude: QTF grade IV i.e. fracture or dislocation & surgical interventions.</td>
<td>Patients' informational needs</td>
<td>Clinical and non clinical articles encompassing the wide range of patients' informational needs.</td>
</tr>
<tr>
<td>Scholten-Peeters, 2002</td>
<td>Include: Patients with whiplash grade I (neck pain, stiffness or tenderness only with no physical signs) or grade II (neck symptoms & musculoskeletal signs). Exclude: studies including patients other than those with whiplash.</td>
<td>Physiotherapy interventions</td>
<td>Include: Systematic reviews, randomised clinical/controlled trials & prospective studies. Exclude: Not English, French, German or Dutch.</td>
</tr>
</tbody>
</table>
Outcomes

Good recovery, return to normal activity, reduction of chronicity.

Related to functions, activities or participation within scope of current physiotherapy practice.

Search strategy

Medline (1966 to June 2000); Cinahl (1982 to June 2000); Cochrane Controlled Trials Register & Cochrane Database of Systematic Reviews (Issue 3 2001); Database of the Dutch Institute of Allied Health Professions (1987 to June 2000). Keywords: including whiplash, neck sprain & neck injury, physiotherapy, physical therapy, behavioural therapy, education, massage, mobilization, exercises, & electrotherapy. References searched.

Results

The main messages emerging were:

• serious physical injury is rare
• reassurance about good prognosis is important
• over-medicalisation is detrimental
• recovery is improved by early return to normal pre-accident activities, self-exercise, manual therapy
• positive attitudes and beliefs are helpful in regaining activity levels
• collars, rest, negative attitudes & beliefs delay recovery and contribute to chronicity.

Peeters SR – 3 studies of acceptable validity concluded that rest may not be advised & active interventions tend to be more effective for whiplash. Magee SR – 8 studies of weak methodological quality reported a modest trend for positive effects of exercises, manual therapy & educational advice on posture for whiplash. Also evidence for ineffectiveness of rest & use of soft collar. Quebec Task Force SR – found weak evidence to limit immobilisation & to support manual mobilisation combined with other physiotherapy. Suggested mobilisations, exercises & advice on posture as adjunct to strategies promoting increased activity.

More recent RCT confirms early return to usual activities preferable to rest & wearing soft collar. Case series found to address efficacy of physiotherapy for chronic whiplash. By consensus, agreed chronic whiplash like other chronic pain conditions. For chronic back pain, neck pain & fibromyalgia, 12 SRs indicate exercise, multidisciplinary treatments & behavioural therapies favourable in managing chronic pain, particularly in returning to normal activities & work.

Conclusions & comments

The scientific evidence on WAD was robust and consistent enough to guide patient advice. Findings were synthesised into patient centred messages with the potential to reduce the risk of chronicity i.e. in The Whiplash Book.

Evidence for positive effect of active interventions, including exercise therapy, education, training functions & activities for acute whiplash. Chronic whiplash similar to other chronic pain conditions and evidence suggests advice, exercise therapy & education using behavioural principles.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhagen et al, 2002</td>
<td>Patients suffering from grade I or II whiplash injury – neck complaints with or without musculoskeletal signs.</td>
<td>Any non-invasive, non-surgical or non-pharmacological treatment.</td>
<td>Include: Only RCTs or Controlled Clinical trials. Quality measured by overall methodological quality score, internal validity score & Delphi quality score. Scores compared. ‘Acceptable validity’ considered >50% of max. scores on at least 2 of 3 quality scales.</td>
</tr>
<tr>
<td>Binder, 2002</td>
<td>Patients with acute or chronic whiplash.</td>
<td>Any treatments.</td>
<td>Systematic reviews (SRs) and RCTs only.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td>Conclusions & comments</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Main outcomes: pain, global perceived effect or participation in daily activities. Other outcomes included: well-being or disability.</td>
<td>Medline (1966 to June 1998), Cinahl (1982 to June 1998), Embase & PsychLit (1988 to June 1998), database of Dutch Institute of Allied Health Professions (1987 to August 1998) & Cochrane Controlled Trial Register. Reference lists checked.</td>
<td>11 studies reviewed, 8 'unacceptable validity' & 3 'acceptable validity'. Active vs inactive or passive: 2 'acceptable' studies. Exercise+ psychological education improved pain, global perceived effect & return to work more than TENS or ultrasound within 30 days. 'Act as usual' improved pain & stiffness initiated in 14 days, more than soft collar & sick leave. 3 'unacceptable' studies found sig. short-term improvements in pain with exercise therapy versus rest & soft collar & 1 found sig. benefit in control group too. Active vs other active: 1 low quality study showed 'phasic exercises' significantly greater effect on function than standard rehab exercises. Inactive vs placebo: 1 'acceptable' study reported PEMT within 72 hrs sig. better than placebo on pain & perceived global effect at 2 & 4 weeks but not 12 weeks – differences at baseline. Conservative vs no treatment: 4 low quality studies: 1 had no comparison between groups; 1 found no difference in pain & recovery between soft collar and no treatment; 2 studies found short-term but no long-term differences between no treatment groups and active intervention or ultra-reiz current. Acute: 4 SRs and 3 subsequent RCTs, 1 RCT in 2 SRs; PEMT sig. reduced pain after 4 weeks (p<0.05) vs. placebo PEMT, not sig. 3 months 1 SR found early mobilisation sig. increased pain relief & ROM after 4 & 8 weeks (p<0.01). 1 RCT found no sig. difference between early mobilisation vs. immobilisation at 12 weeks. 1 RCT found active mobilisation sig. improved symptoms started immediately after injury vs. rest plus collar (P<0.001) – 2 week delay not sig. 1 RCT in 1 SR found ‘act as usual’ plus NSAIDs improved subjective symptoms after 6 months vs. immobilisation plus 2 weeks sick leave, no sig. difference in objective ROM or sick leave taken & no difference in severe symptoms after 6 months (11% ‘act as usual’ vs. 15% immob. RR 0.75, 95%CI 0.08 to 1.42). SRs and subsequent RCTs found limited evidence that electromagnetic field treatment versus placebo, early mobilisation versus immobilisation or rest plus collar, and multimodal treatment versus physical treatment significantly reduce pain, and that advice to act as usual plus anti-inflammatory drugs versus immobilisation plus...</td>
<td></td>
</tr>
</tbody>
</table>

Pain; range of movement; function; adverse effects of treatment; return to work; level of disability (Neck Disability Index). Usual Clinical Evidence search strategy (Medline, Embase, Cinahl, etc). Also searched Chrolars (Mantis) (1966 to Nov 1999), Bioethics (1973 to 1997) & Current Contents (1994 to 1997).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patients</th>
<th>Interventions</th>
<th>Study designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magee et al, 2000</td>
<td>Include: male or female participants with sufficient soft tissue trauma to the cervical spine. Exclude: animal studies; people with rheumatic diseases, neurological/autonomic deficit & fractures.</td>
<td>Physical therapy intervention or programme within scope of physical therapy practice in Canada.</td>
<td>Prospective studies with control group or before-after study. Used ‘Relevance’ tool – Haywood & Dobbins. Systematic Overview Project. Edmonton: Alberta Heritage Foundation for Medical Research, 1997 – to see if met inclusion/exclusion criteria. Rated as ‘strong’, ‘moderate’ or ‘weak’ depending on the number of criteria with ‘pass’, ‘moderate’ or ‘fail’ assigned to them. Used critical appraisal tool to extract data from included studies – no ref.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td>Conclusions & comments</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Range of motion; pain;</td>
<td>Medline (1985-Feb 1997); CINAHL (1985-Dec 1996); EMBASE (1988-Dec 1996);</td>
<td>1 RCT found no sig. difference between regular exercise regimen & instructions to perform extra isometric exercise 3x per day in pain or disability after 3 or 6 months. 1 RCT in 1 SR found that multimodal treatment (postural training, psychological support, eye fixation exercises, & manual treatment) sig. reduced pain vs. physical treatment (electrical, sonic, ultrasound & TENS) at end of treatment & at 1 & 6 months (p<0.001) and reduced time to return to work. Chronic: 1 SR found no physiotherapy trials.</td>
<td>14 days sick leave improves mild subjective symptoms. One RCT found no significant difference between different home exercise programmes versus each other in pain or disability.</td>
</tr>
<tr>
<td>patient satisfaction</td>
<td>Current Contents (1966-Mar 1997); HealthStar (1985-Dec 1996); Canadian Research</td>
<td>More than 11 different combinations of interventions; could not tell which particular treatment or combination more effective. 7 of 8 studies indicated improvement in treatment group, no study showed harmful effects of physical therapy. Positive trend highlighted by poor response of rest/analgesia group without physical therapy in McKinney’s study, which had to be discontinued. In Foley-Nolan & Gennis studies subjects who had poor response to allocated intervention sought additional or alternative physical therapy. Positive trend in acute whiplash from exercise, manual therapy, pulsed electromagnetic therapy & educational advice on posture & positioning. Chronic injuries responded positively to holistic acupuncture in Su & Su’s study. Soft collar use for 1–3 weeks not supported by evidence.</td>
<td>Exercises, manual therapy, educational advice on posture & pulsed electromagnetic therapy appear to have a positive effect on acute traumatic neck injuries following automobile accident. Evidence indicating acupuncture may be useful in chronic whiplash. Evidence that use of soft cervical collars used alone of no value in treating acute injuries although subjects felt more comfortable.</td>
</tr>
<tr>
<td></td>
<td>Index (1982-1997); AMED (1985-1997); Chirolars (1990-1997); Agency for Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Care Policy & Research (AHCPR); & The Cochrane Library (1985-1997); Handsearched:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spine; Journal of Orthopedic and Sports Physical Therapy; Journal of Manipulative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Patients</td>
<td>Interventions</td>
<td>Study designs</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Spitzer et al, 1995</td>
<td>Include: acceleration deceleration injury to the neck from a motor vehicle collision.
Exclude: minimal (grade 0 injury), shaken baby syndrome & diving injury</td>
<td>A range of physiotherapy interventions: soft collars, rest, cervical pillow, manual mobilisation, exercise, traction, postural advice, passive modalities & electrotherapies, psychosocial interventions, prescribed function, acupuncture.</td>
<td>Data from many published & original studies over 2 decades. Only original research was considered as scientific.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Search strategy</td>
<td>Results</td>
<td>Conclusions & comments</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Absence from usual activities, occurrence of a relapse, cost of the injury.</td>
<td>Broad search of Medline, TRIS, NTIS from 1980 to September 1994. Published and unpublished studies known to task force members. Agencies e.g. Insurance Institute for Highway Safety. Scanning of reference lists.</td>
<td>A series of recommendations were made i.e. encourage early return to usual activity, promote mobility; discourage soft collars; in the acute stage, treatments for pain relief, including manipulative treatments, might be beneficial with promotion of activity; reassurance of the likelihood of a good prognosis was important; dependence on health professionals and extensive use of manipulation should be discouraged.</td>
<td>The study found little scientifically rigorous information. Most conclusions were based on the best available evidence & consensus.</td>
</tr>
</tbody>
</table>
Appendix D

The Delphi Questionnaire (round one)

The CSP guidelines development group on whiplash associated disorder (WAD)

Helping us reach a consensus

Please read each statement carefully, decide the extent to which you agree or disagree with it and mark one box. However note that a few questions are open and require a few words rather than a tick. It would be helpful if you could return the form to us by 18th September 2003.

If you would like to make more detailed comments please use the reverse of this questionnaire. Ensure that you emphasise the question number that your comment refers to.

<table>
<thead>
<tr>
<th>Questions 1–4 cover general considerations concerning WAD</th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The following indicate increased likelihood of severe symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Looking to one side during a rear-end collision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Poorly positioned headrest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. These pre-existing factors indicate that a poor prognosis is likely following WAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pre-existing degenerative changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Pre-trauma headaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Pre-trauma neck ache</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Low level of job satisfaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Injury occurring at 50 years of age and above</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Being female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The following post-injury factors suggest that a poor prognosis is likely following WAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Headache for more than six months following injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Neurological signs present after injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Unresolved legal issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. The natural history of WAD suggests that</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. It is good practice for physiotherapists to advise people with WAD that they are very likely to recover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions 5–12 consider the examination and assessment strategies of people with WAD

5 In the acute stage, entering physiotherapy services is best prioritised by:
 a. A physiotherapist working in the Accident and Emergency department
 b. A physiotherapist assessing individual people by telephone
 c. A physiotherapist screening individual people using the information provided on the referral form
 d. A physiotherapist screening individual people

6 The following factors make an individual person a higher priority at the assessment/screening stage
 a. The injury occurred more recently
 b. The symptoms have been present over a longer time period
 c. Person’s activities of daily living are disrupted
 d. Person is off work

7 A physiotherapist should always test for instability when a person with WAD has one or more of the following:
 a. Inability to support his/her head
 b. Dysphagia
 c. Tongue paraesthesia
 d. A metallic taste in his/her mouth
 e. Facial lip paraesthesia
 f. Bilateral limb paraesthesia
 g. Quadrilateral limb paraesthesia
 h. Nystagmus

8 Instability is tested by the following methods:
 a. Distraction tests
 b. Sagittal stress tests
 c. The Sharp-Purser sagittal stress test
 d. Coronal stress tests
 e. Alar ligament stress tests
9. Please list the textbook(s) that you would recommend for physiotherapists for details of assessing patients WAD?

10. Do these recognised barriers to recovery from chronic pain apply to people with WAD?
 a. High fear of pain and movement (fearing that pain and/or movement leads to harm)
 b. High tendency to catastrophise (thinking the worst about the pain)
 c. Low self-efficacy (lacking confidence in ability to undertake a particular activity)
 d. Severe anxiety
 e. Evidence of severe depression
 f. Low pain locus of control (believing that it is impossible to control the pain)
 g. High use of passive coping strategies (withdrawal/passing on responsibility for pain control to others)
 h. Series of previously failed treatments
 i. Person currently off work as a result of the pain
 j. Chronic widespread pain
 k. Do you think that there are any other barriers to recovery for WAD sufferers? Please specify.

11. The barriers to recovery should be assessed at the following stages after injury:
 a. Less than 2 weeks after injury
 b. After 2 weeks and before 6 weeks
 c. After 6 weeks and before 12 weeks
 d. At 12 weeks or more

12. A major aim of physiotherapy treatment should be?
 a. To relieve symptoms
 b. To improve function
 c. To facilitate empowerment of the person
 d. To get the person back to normal activity/work
Questions 13–15 consider physiotherapeutic intervention in the first two weeks after injury

13 The following should be used to enhance the effect of rest and analgesia in reducing pain:
 a. Soft collars
 b. Manual mobilisation
 c. Active exercise
 d. A general active exercise programme devised for people with WAD
 e. An active exercise programme devised for each individual following assessment
 f. Interferential therapy
 g. Ultrasound treatment
 h. Massage
 i. Soft tissue techniques
 j. TENS
 k. Laser treatment
 l. Infrared light
 m. Traction
 n. Acupuncture
 o. Relaxation
 p. Education about the origin of the pain
 q. Advice about coping strategies

14 The effect of early manual mobilisation techniques versus initial rest and soft collar
 a. Early manual mobilising is more effective than rest and a soft collar in improving neck range of movement
 b. Early manual mobilisation is more effective than initial rest in improving function

15 An early physiotherapy programme versus initial rest and an exercise routine
 a. Early physiotherapy ‘as usual’ is more effective than initial rest followed by an exercise routine in improving function
Questions 16–18 consider the physiotherapeutic intervention after two weeks and before twelve weeks since injury

16 Manipulation and manual mobilisation
 a. Manipulation alone reduces pain
 b. Manual mobilisation alone reduces pain
 c. Manual mobilisation is more effective than a combination of ice and TENS in reducing pain
 d. Manual mobilisation is more effective than acupuncture in reducing pain
 e. Manual mobilisation is more effective than a single manipulation in reducing pain
 f. Combined manipulation and manual mobilisation reduces pain
 g. Combined manipulation and manual mobilisation is effective in improving function

17 Adverse events resulting from cervical manipulation
 a. The risk of serious adverse events (e.g. vertebrobasilar accidents) from manipulation is low
 b. Minor or moderate adverse events (e.g. headache or nausea) occur in around half of all patients receiving cervical manipulation

18 The effect of other interventions
 a. Acupuncture is effective in reducing neck pain
 b. Soft collars are effective in reducing pain
 c. Education is effective in improving neck function
 d. Advice about coping strategies is effective in enabling patients to return to normal activities
 e. Traction is effective in reducing neck pain
 f. TENS is effective in reducing neck pain
 g. Infrared light is effective in reducing neck pain
 h. Laser treatment is effective in reducing neck pain
 i. Interferential therapy is effective in reducing neck pain
 j. Ultrasound treatment is effective in reducing neck pain
k. Massage is effective in reducing neck pain

l. Soft tissue techniques are effective in reducing neck pain

m. Muscle retraining and deep neck flexor activity is effective in improving function

n. Phasic exercise (rapid eye-hand-neck movements) is effective in improving function

Questions 19–23 consider the physiotherapeutic intervention for chronic whiplash i.e. 12 weeks or more since injury

19 Manipulation and manual mobilisation
 a. Manual mobilisation reduces pain
 b. Manipulation reduces pain
 c. Manual mobilisation is as effective as ice in reducing pain
 d. Manual mobilisation is more effective than a combination of ice and TENS in reducing pain
 e. Manual mobilisation is more effective than acupuncture in reducing pain
 f. Manual mobilisation is more effective than a single manipulation in reducing pain
 g. Combined manipulation and manual mobilisation reduce pain
 h. Combined manipulation and manual mobilisation is effective in improving function

20 Comparing manipulation and exercise combined with manipulation alone
 a. Manipulation and exercise is more effective than manipulation alone in reducing long term pain
 b. Manipulation and exercise is more effective than manipulation alone in terms of patient satisfaction
 c. Manipulation and exercise is more effective than manipulation alone in improving function

21 Exercise therapy
 a. Standard exercise (stretching, isometric, isokinetic) is more effective than phasic exercise (rapid eye-hand-neck movements) in improving function
 b. Strengthening exercise is more effective than endurance training in reducing pain
<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Strengthening exercise is more effective than endurance training in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>d. Strengthening exercise is more effective than body awareness training in reducing pain</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>e. Strengthening exercise is more effective than body awareness training in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>f. Strengthening exercise is more effective than passive physiotherapy in reducing pain</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>g. Strengthening exercise is more effective than passive physiotherapy in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>h. Group exercise is effective in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>i. Proprioceptive exercise improves neck function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>j. Neck schools are effective in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>k. Extension retraction exercises are effective in improving neck function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>l. Mobilising exercises are effective in reducing pain</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>m. Exercises based on individual patient assessment is more effective than a generalised exercise programme in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>n. Advice about coping strategies combined with exercise is more effective than exercise alone in returning to normal activity</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

22 Acupuncture

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Acupuncture is more effective than massage in reducing pain</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b. Acupuncture is more effective than sham acupuncture in reducing pain</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

23 Multidisciplinary psychosocial rehabilitation

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Multidisciplinary rehabilitation is more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Question 24 considers outcome of physiotherapeutic intervention for WAD

24 The following outcome measures are likely to be most effective for assessing progress of people with WAD

<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. For pain: The visual analogue scale</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b. For function: The neck disability index</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>
c. For return to usual activities:
The physiotherapy specific functional scale

d. For a patient centred measure: Measure
yourself medical outcome profile (MYMOP)

e. For fear of movement: The Tampa Scale for
Kinesiophobia (TSK)

f. Are there other measures that you use and
can recommend?

<table>
<thead>
<tr>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 25 is about you

a. What is your specialist area in physiotherapy?

b. How long (in years) have you specialised in this area?

c. Can you tell us approximately how many people with WAD you treat per year?

Please return your completed form either on paper or electronically by Thursday 18th September 2003 to:

Helen Whittaker
Learning and Development
The Chartered Society of Physiotherapy
14 Bedford Row
London WC1R 4ED

or to: whittakerh@csp.org.uk

Thank you very much for your help in producing the CSP whiplash guidelines.
Appendix E

The Delphi Questionnaire (round two)

The CSP guidelines development group on whiplash associated disorder (WAD)

Helping us reach a consensus – Second round

Thank you very much for your help with the Delphi questionnaire. For this second round the percentage of respondents who marked each box in the first round is indicated beside each statement. For clarity we have not shown decimal places but the result is that rows do not necessarily total 100%. Note that some statements are new to this round. Please consider each statement, decide on your response now and mark one box. It would be helpful if you could return the form to us by 3rd November 2003.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
</table>

Questions 1–4 cover general considerations concerning WAD

1 The following indicate increased likelihood of severe symptoms
 a. Looking to one side during a rear-end collision
 - 28% Strongly agree, 43% Agree, 23% Neither agree nor disagree, 5% Disagree, 0% Strongly disagree, 3% Don't know
 b. Poorly positioned headrest
 - 28% Strongly agree, 51% Agree, 13% Neither agree nor disagree, 5% Disagree, 0% Strongly disagree, 3% Don't know

2 These pre-existing factors indicate that a poor prognosis is likely following WAD
 a. Pre-existing degenerative changes
 - 30% Strongly agree, 53% Agree, 8% Neither agree nor disagree, 8% Disagree, 0% Strongly disagree, 3% Don't know
 b. Pre-trauma headaches
 - 20% Strongly agree, 35% Agree, 23% Neither agree nor disagree, 13% Disagree, 3% Strongly disagree, 8% Don't know
 c. Pre-trauma neck ache
 - 20% Strongly agree, 50% Agree, 18% Neither agree nor disagree, 10% Disagree, 0% Strongly disagree, 3% Don't know
 d. Low level of job satisfaction
 - 23% Strongly agree, 50% Agree, 15% Neither agree nor disagree, 5% Disagree, 0% Strongly disagree, 8% Don't know
 e. Injury occurring at 50 years of age and above
 - 10% Strongly agree, 30% Agree, 38% Neither agree nor disagree, 15% Disagree, 0% Strongly disagree, 8% Don't know
 f. Being female
 - 5% Strongly agree, 25% Agree, 30% Neither agree nor disagree, 30% Disagree, 3% Strongly disagree, 8% Don't know

3 The following post-injury factors suggest that a poor prognosis is likely following WAD
 a. Headache for more than six months following injury
 - 28% Strongly agree, 58% Agree, 5% Neither agree nor disagree, 8% Disagree, 0% Strongly disagree, 3% Don't know
 b. Neurological signs present after injury
 - 45% Strongly agree, 45% Agree, 8% Neither agree nor disagree, 3% Disagree, 0% Strongly disagree, 0% Don't know
 c. Unresolved legal issues
 - 25% Strongly agree, 50% Agree, 18% Neither agree nor disagree, 5% Disagree, 0% Strongly disagree, 3% Don't know
4 The natural history of WAD suggests that
a. It is good practice for physiotherapists to advise people with WAD that they are very likely to recover

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>68%</td>
<td>30%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Questions 5–12 consider the examination and assessment strategies of people with WAD.

5 In the acute stage, entering physiotherapy services is best prioritised by:

<table>
<thead>
<tr>
<th>a. A physiotherapist working in the Accident and Emergency department</th>
<th>49%</th>
<th>36%</th>
<th>10%</th>
<th>5%</th>
<th>0%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. A physiotherapist assessing individual people by telephone</td>
<td>13%</td>
<td>49%</td>
<td>21%</td>
<td>18%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>c. A physiotherapist screening individual people using the information provided on the referral form</td>
<td>3%</td>
<td>26%</td>
<td>38%</td>
<td>23%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>d. A physiotherapist screening individual people</td>
<td>28%</td>
<td>48%</td>
<td>15%</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

6 The following factors make an individual person a higher priority at the assessment/screening stage

<table>
<thead>
<tr>
<th>a. The injury occurred more recently</th>
<th>30%</th>
<th>58%</th>
<th>8%</th>
<th>5%</th>
<th>0%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. The symptoms have been present over a longer time period</td>
<td>8%</td>
<td>30%</td>
<td>38%</td>
<td>23%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>c. Person’s activities of daily living are disrupted</td>
<td>50%</td>
<td>48%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>d. Person is off work</td>
<td>78%</td>
<td>18%</td>
<td>3%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

7 A physiotherapist should always test for instability when a person with WAD has one or more of the following:

<table>
<thead>
<tr>
<th>a. Inability to support his/her head</th>
<th>37%</th>
<th>29%</th>
<th>11%</th>
<th>3%</th>
<th>11%</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Dysphagia</td>
<td>42%</td>
<td>34%</td>
<td>5%</td>
<td>3%</td>
<td>5%</td>
<td>11%</td>
</tr>
<tr>
<td>c. Tongue paraesthesia</td>
<td>47%</td>
<td>32%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>11%</td>
</tr>
<tr>
<td>d. A metallic taste in his/her mouth</td>
<td>39%</td>
<td>29%</td>
<td>8%</td>
<td>5%</td>
<td>5%</td>
<td>13%</td>
</tr>
</tbody>
</table>
e. Facial or lip paraesthesia

<table>
<thead>
<tr>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>37%</td>
<td>37%</td>
<td>5%</td>
<td>3%</td>
<td>5%</td>
<td>13%</td>
</tr>
</tbody>
</table>

f. Bilateral limb paraesthesia

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>47%</td>
<td>21%</td>
<td>13%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>13%</td>
<td>3%</td>
<td>8%</td>
<td>5%</td>
<td>11%</td>
</tr>
</tbody>
</table>

g. Quadrilateral limb paraesthesia

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>18%</td>
<td>8%</td>
<td>5%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>8%</td>
<td>5%</td>
<td>5%</td>
<td></td>
<td>11%</td>
</tr>
</tbody>
</table>

h. Nystagmus

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39%</td>
<td>29%</td>
<td>11%</td>
<td>3%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>11%</td>
<td>5%</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i. Gait disturbance

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8%</td>
<td>21%</td>
<td>11%</td>
<td>3%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>11%</td>
<td>5%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 Instability is tested by the following methods:

a. Distraction tests

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19%</td>
<td>28%</td>
<td>6%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>13%</td>
<td>6%</td>
<td></td>
<td>28%</td>
</tr>
</tbody>
</table>

b. Sagittal stress tests

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16%</td>
<td>28%</td>
<td>9%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>6%</td>
<td>3%</td>
<td></td>
<td>34%</td>
</tr>
</tbody>
</table>

c. The Sharp-Purser sagittal stress test

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36%</td>
<td>27%</td>
<td>6%</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>3%</td>
<td>27%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d. Coronal stress tests

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16%</td>
<td>25%</td>
<td>13%</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>3%</td>
<td>38%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. Alar ligament stress tests

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27%</td>
<td>45%</td>
<td>3%</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>18%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 This textbook could be recommend to assist physiotherapists in assessing people with WAD?

j. Gifford L (ed.) Topical Issues in Pain (series)

10 Do these recognised barriers to recovery from chronic pain apply to people with WAD?

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. High fear of pain and movement (fearing that pain and/or movement leads to harm)</td>
<td>90%</td>
<td>8%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>b. High tendency to catastrophise (thinking the worst about the pain)</td>
<td>85%</td>
<td>13%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>c. Low self-efficacy (lacking confidence in ability to undertake a particular activity)</td>
<td>60%</td>
<td>33%</td>
<td>5%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>d. Severe anxiety</td>
<td>58%</td>
<td>40%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>e. Evidence of severe depression</td>
<td>56%</td>
<td>33%</td>
<td>8%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>f. Low pain locus of control (believing that it is impossible to control the pain)</td>
<td>78%</td>
<td>18%</td>
<td>3%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>g. High use of passive coping strategies (withdrawal/passing on responsibility for pain control to others)</td>
<td>68%</td>
<td>28%</td>
<td>3%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>h. Series of previously failed treatments</td>
<td>53%</td>
<td>45%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>i. Person currently off work as a result of the pain</td>
<td>38%</td>
<td>38%</td>
<td>18%</td>
<td>8%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>j. Chronic widespread pain</td>
<td>53%</td>
<td>38%</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>k. Poor understanding of the healing mechanism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Non compliance with treatment and advice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Problems in relationships with others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. Negative expectations of treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o. Unrealistic expectations of treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p. Failure of the physiotherapist to address an individual person’s needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q. Poor clinical reasoning by the physiotherapist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11 The barriers to recovery should be assessed at the following stages after injury:

<table>
<thead>
<tr>
<th>Duration</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Less than 2 weeks</td>
<td>22%</td>
<td>35%</td>
<td>24%</td>
<td>19%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>b. After 2 weeks and before 6 weeks</td>
<td>32%</td>
<td>50%</td>
<td>8%</td>
<td>11%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>c. After 6 weeks and before 12 weeks</td>
<td>34%</td>
<td>45%</td>
<td>13%</td>
<td>3%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>d. At 12 weeks or more</td>
<td>38%</td>
<td>28%</td>
<td>8%</td>
<td>18%</td>
<td>8%</td>
<td>0%</td>
</tr>
</tbody>
</table>

12 A major aim of physiotherapy treatment should be?

<table>
<thead>
<tr>
<th>Aim</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. To relieve symptoms</td>
<td>28%</td>
<td>55%</td>
<td>10%</td>
<td>8%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>b. To improve function</td>
<td>70%</td>
<td>30%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>c. To facilitate empowerment of the person</td>
<td>88%</td>
<td>13%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>d. To get the person back to normal activity/work</td>
<td>90%</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Questions 13–15 consider physiotherapeutic intervention in the first two weeks after injury

13. The following should be used to enhance the effect of rest and analgesia in reducing pain:

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Soft collars</td>
<td>8%</td>
<td>13%</td>
<td>20%</td>
<td>25%</td>
<td>35%</td>
<td>0%</td>
</tr>
<tr>
<td>b. Manual mobilisation</td>
<td>10%</td>
<td>33%</td>
<td>26%</td>
<td>21%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>c. Active exercise</td>
<td>69%</td>
<td>23%</td>
<td>8%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>d. A general active exercise programme devised for people with WAD</td>
<td>28%</td>
<td>46%</td>
<td>15%</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>e. An active exercise programme devised for each individual following assessment</td>
<td>50%</td>
<td>30%</td>
<td>18%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>f. Interferential therapy</td>
<td>0%</td>
<td>13%</td>
<td>33%</td>
<td>18%</td>
<td>38%</td>
<td>0%</td>
</tr>
<tr>
<td>g. Ultrasound treatment</td>
<td>0%</td>
<td>13%</td>
<td>28%</td>
<td>23%</td>
<td>38%</td>
<td>0%</td>
</tr>
<tr>
<td>h. Massage</td>
<td>3%</td>
<td>35%</td>
<td>28%</td>
<td>18%</td>
<td>18%</td>
<td>0%</td>
</tr>
<tr>
<td>Procedure</td>
<td>Strongly agree</td>
<td>Agree nor disagree</td>
<td>Neither agree</td>
<td>Disagree</td>
<td>Strongly disagree</td>
<td>Don't know</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>i. Soft tissue techniques</td>
<td>8%</td>
<td>35%</td>
<td>25%</td>
<td>15%</td>
<td>18%</td>
<td>0%</td>
</tr>
<tr>
<td>j. TENS</td>
<td>5%</td>
<td>50%</td>
<td>28%</td>
<td>10%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>k. Laser treatment</td>
<td>0%</td>
<td>0%</td>
<td>30%</td>
<td>28%</td>
<td>30%</td>
<td>3%</td>
</tr>
<tr>
<td>l. Infrared light</td>
<td>0%</td>
<td>3%</td>
<td>30%</td>
<td>20%</td>
<td>40%</td>
<td>3%</td>
</tr>
<tr>
<td>m. Traction</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td>38%</td>
<td>40%</td>
<td>3%</td>
</tr>
<tr>
<td>n. Acupuncture</td>
<td>10%</td>
<td>35%</td>
<td>33%</td>
<td>8%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>o. Relaxation</td>
<td>18%</td>
<td>50%</td>
<td>26%</td>
<td>3%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>p. Education about the origin of the pain</td>
<td>69%</td>
<td>21%</td>
<td>8%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>q. Advice about coping strategies</td>
<td>75%</td>
<td>23%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

14 The effect of early manual mobilisation techniques versus initial rest and soft collar

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Strongly agree</th>
<th>Agree nor disagree</th>
<th>Neither agree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Early manual mobilising is more effective than rest and a soft collar in improving neck range of movement</td>
<td>43%</td>
<td>33%</td>
<td>10%</td>
<td>13%</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td>b. Early manual mobilisation is more effective than initial rest in improving function</td>
<td>28%</td>
<td>40%</td>
<td>20%</td>
<td>13%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

15 An early physiotherapy programme versus initial rest and an exercise routine

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Strongly agree</th>
<th>Agree nor disagree</th>
<th>Neither agree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Early physiotherapy ‘as usual’ is more effective than initial rest followed by an exercise routine in improving function</td>
<td>28%</td>
<td>15%</td>
<td>18%</td>
<td>25%</td>
<td>3%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Questions 16–18 consider the physiotherapeutic intervention after two weeks and before twelve weeks since injury

16 Manipulation and manual mobilisation

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Strongly agree</th>
<th>Agree nor disagree</th>
<th>Neither agree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Manipulation alone reduces pain</td>
<td>3%</td>
<td>13%</td>
<td>28%</td>
<td>25%</td>
<td>33%</td>
<td>0%</td>
</tr>
<tr>
<td>b. Manual mobilisation alone reduces pain</td>
<td>5%</td>
<td>20%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>0%</td>
</tr>
<tr>
<td>c. Manual mobilisation more effective than a combination of ice and TENS in reducing pain</td>
<td>8%</td>
<td>25%</td>
<td>30%</td>
<td>23%</td>
<td>3%</td>
<td>13%</td>
</tr>
</tbody>
</table>
17 Adverse events resulting from cervical manipulation

a. The risk of serious adverse events (e.g. vertebrobasilar accidents) from manipulation is low

b. Minor or moderate adverse events (e.g. headache or nausea) occur in around half of all patients receiving cervical manipulation

18 The effect of other interventions

a. Acupuncture is effective in reducing neck pain

b. Soft collars are effective in reducing pain

c. Education is effective in improving neck function

d. Advice about coping strategies is effective in enabling patients to return to normal activities

e. Traction is effective in reducing neck pain

f. TENS is effective in reducing neck pain

g. Infrared light is effective in reducing neck pain

h. Laser treatment is effective in reducing neck pain
<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Interferential therapy is effective in reducing neck pain</td>
<td>3%</td>
<td>23%</td>
<td>25%</td>
<td>23%</td>
<td>20%</td>
<td>8%</td>
</tr>
<tr>
<td>j. Ultrasound treatment is effective in reducing neck pain</td>
<td>0%</td>
<td>20%</td>
<td>23%</td>
<td>30%</td>
<td>23%</td>
<td>5%</td>
</tr>
</tbody>
</table>
k. Massage is effective in reducing neck pain | 3% | 48% | 33% | 10% | 8% | 0% |
l. Soft tissue techniques are effective in reducing neck pain | 5% | 54% | 15% | 10% | 10% | 5% |
m. Muscle retraining and deep neck flexor activity is effective in improving function | 13% | 70% | 10% | 5% | 3% | 0% |
n. Phasic exercise (rapid eye-hand-neck movements) is effective in improving function | 0% | 15% | 38% | 10% | 0% | 38% |

Questions 19–23 consider the physiotherapeutic intervention for chronic whiplash i.e. 12 weeks or more since injury

19 Manipulation and manual mobilisation

a. Manual mobilisation reduces pain | 15% | 51% | 13% | 15% | 5% | 0% |
b. Manipulation reduces pain | 13% | 39% | 11% | 32% | 5% | 0% |
c. Manual mobilisation is as effective as ice in reducing pain | 13% | 18% | 38% | 8% | 8% | 15% |
d. Manual mobilisation is more effective than a combination of ice and TENS in reducing pain | 18% | 18% | 21% | 15% | 5% | 23% |
e. Manual mobilisation is more effective than acupuncture in reducing pain | 5% | 13% | 31% | 23% | 8% | 21% |
f. Manual mobilisation is more effective than a single manipulation in reducing pain | 8% | 21% | 36% | 21% | 5% | 10% |
g. Combined manipulation and manual mobilisation reduce pain | 8% | 44% | 23% | 13% | 5% | 8% |
h. Combined manipulation and manual mobilisation is effective in improving function | 10% | 41% | 26% | 13% | 8% | 3% |
20 Comparing manipulation and exercise combined with manipulation alone

a. Manipulation and exercise is more effective than manipulation alone in reducing long term pain
 - Strongly Agree: 33%
 - Agree: 51%
 - Neither Agree nor Disagree: 3%
 - Disagree: 8%
 - Strongly Disagree: 0%
 - Don't know: 5%

b. Manipulation and exercise is more effective than manipulation alone in terms of patient satisfaction
 - Strongly Agree: 28%
 - Agree: 38%
 - Neither Agree nor Disagree: 15%
 - Disagree: 3%
 - Strongly Disagree: 0%
 - Don't know: 15%

c. Manipulation and exercise is more effective than manipulation alone in improving function
 - Strongly Agree: 31%
 - Agree: 56%
 - Neither Agree nor Disagree: 5%
 - Disagree: 0%
 - Strongly Disagree: 3%

21 Exercise therapy

a. Standard exercise (stretching, isometric, isokinetic) is more effective than phasic exercise (rapid eye-hand-neck movements) in improving function
 - Strongly Agree: 16%
 - Agree: 26%
 - Neither Agree nor Disagree: 16%
 - Disagree: 0%
 - Strongly Disagree: 0%
 - Don't know: 42%

b. Strengthening exercise is more effective than endurance training in reducing pain
 - Strongly Agree: 0%
 - Agree: 13%
 - Neither Agree nor Disagree: 46%
 - Disagree: 21%
 - Strongly Disagree: 3%
 - Don't know: 18%

c. Strengthening exercise is more effective than endurance training in improving function
 - Strongly Agree: 0%
 - Agree: 13%
 - Neither Agree nor Disagree: 44%
 - Disagree: 26%
 - Strongly Disagree: 3%
 - Don't know: 15%

d. Strengthening exercise is more effective than body awareness training in reducing pain
 - Strongly Agree: 3%
 - Agree: 5%
 - Neither Agree nor Disagree: 46%
 - Disagree: 28%
 - Strongly Disagree: 3%
 - Don't know: 15%

e. Strengthening exercise is more effective than body awareness training in improving function
 - Strongly Agree: 3%
 - Agree: 8%
 - Neither Agree nor Disagree: 81%
 - Disagree: 28%
 - Strongly Disagree: 5%
 - Don't know: 15%

f. Strengthening exercise is more effective than passive physiotherapy in reducing pain
 - Strongly Agree: 18%
 - Agree: 28%
 - Neither Agree nor Disagree: 31%
 - Disagree: 13%
 - Strongly Disagree: 0%
 - Don't know: 10%

g. Strengthening exercise is more effective than passive physiotherapy in improving function
 - Strongly Agree: 18%
 - Agree: 44%
 - Neither Agree nor Disagree: 21%
 - Disagree: 10%
 - Strongly Disagree: 0%
 - Don't know: 8%

h. Group exercise is effective in improving function
 - Strongly Agree: 15%
 - Agree: 36%
 - Neither Agree nor Disagree: 31%
 - Disagree: 13%
 - Strongly Disagree: 0%
 - Don't know: 5%

i. Proprioceptive exercise improves neck function
 - Strongly Agree: 10%
 - Agree: 59%
 - Neither Agree nor Disagree: 26%
 - Disagree: 3%
 - Strongly Disagree: 0%
 - Don't know: 3%

j. Neck schools are effective in improving function
 - Strongly Agree: 5%
 - Agree: 38%
 - Neither Agree nor Disagree: 32%
 - Disagree: 11%
 - Strongly Disagree: 0%
 - Don't know: 14%
<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.</td>
<td>8%</td>
<td>41%</td>
<td>32%</td>
<td>14%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>l.</td>
<td>8%</td>
<td>72%</td>
<td>13%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>m.</td>
<td>30%</td>
<td>45%</td>
<td>8%</td>
<td>15%</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td>n.</td>
<td>70%</td>
<td>28%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
</tr>
</tbody>
</table>

22 Acupuncture

a. Acupuncture is more effective than massage in reducing pain

b. Acupuncture is more effective than sham acupuncture in reducing pain

23 Multidisciplinary psychosocial rehabilitation

a. Multidisciplinary rehabilitation is more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function

Question 24 considers outcome of physiotherapeutic intervention for WAD

24 The following outcome measures are likely to be most effective for assessing progress of people with WAD

a. For pain: The visual analogue scale

b. For function: The neck disability index

c. For return to usual activities: The physiotherapy specific functional scale

d. For a patient centred measure: Measure yourself medical outcome profile (MYMOP)

e. For fear of movement: The Tampa Scale for Kinesiophobia (TSK)
<table>
<thead>
<tr>
<th></th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neither agree nor disagree</th>
<th>Disagree</th>
<th>Strongly disagree</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>f. For quality of life: SF-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. For patient satisfaction: The CSPs Clinical Audit tool, The patient feedback questionnaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. For anxiety and depression: The hospital anxiety and depression questionnaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. For self-efficacy: The Chronic Pain Self-Efficacy Scale (CPSES)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please return your completed form either on paper or electronically by Friday 31st October 2003 to:

Helen Whittaker
Learning and Development
The Chartered Society of Physiotherapy
14 Bedford Row
London WC1R 4ED
or to: whittakerh@csp.org.uk

Thank you very much for your help in producing the CSP whiplash guidelines.
Appendix F:

Analysis of physiotherapists who completed the Delphi questionnaires

<table>
<thead>
<tr>
<th>Specialist area in physiotherapy</th>
<th>Years spent working in this area</th>
<th>Number of people with WAD seen each year (approx.)</th>
<th>Completed first round yes/no</th>
<th>Completed second round yes/no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal</td>
<td>7</td>
<td>20</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Out-patients</td>
<td>1</td>
<td>20</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal (A&E)</td>
<td>2</td>
<td>Not given</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Manager</td>
<td>15</td>
<td>0</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal (but now manager)</td>
<td>20</td>
<td>None in last 3 years</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Chronic musculoskeletal pain</td>
<td>9</td>
<td>5 (working in HE)</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Out-patients</td>
<td>18</td>
<td>200</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Out-patients (chronic pain/fatigue syndrome)</td>
<td>13 in musculoskeletal of which last 5 in chronic pain</td>
<td>50</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Research</td>
<td>14</td>
<td>50</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>15</td>
<td>30</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Spinal disorders</td>
<td>7</td>
<td>10 (much less since closure of casualty dept in hospital)</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Chronic pain</td>
<td>9</td>
<td>not given</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Orthopaedic out-patients</td>
<td>10</td>
<td>100</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>20</td>
<td>10</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>8</td>
<td>4</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Manipulative diploma graduate</td>
<td>23</td>
<td>50</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>10</td>
<td>None at present</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Neuro-musculoskeletal dysfunction</td>
<td>33</td>
<td>Used to be about 1 per week</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>16</td>
<td>50–100</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>6</td>
<td>30</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>4+</td>
<td>10+</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Neuro musculoskeletal</td>
<td>15</td>
<td>15</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal disorders and rheumatology</td>
<td>9 (researcher)</td>
<td>1–2</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>9</td>
<td>10</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>10</td>
<td>6–10</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Specialist area in physiotherapy</td>
<td>Years spent working in this area</td>
<td>Number of people with WAD seen each year (approx.)</td>
<td>Completed first round yes/no</td>
<td>Completed second round yes/no</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>13</td>
<td>5 (currently lecture, in past 50)</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Neck and shoulder in musculoskeletal out-patients</td>
<td>28</td>
<td>40</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Neuro musculoskeletal</td>
<td>9</td>
<td>not given</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>6</td>
<td>8</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>12</td>
<td>30–40</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>15</td>
<td>Less than 10</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Out-patient musculoskeletal</td>
<td>7</td>
<td>150</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>15</td>
<td>10–15</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>not given</td>
<td>not given</td>
<td>not given</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Exercise prescription/cognitive behavioural approach</td>
<td>3</td>
<td>0</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal, low back pain</td>
<td>13</td>
<td>20</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>15</td>
<td>50</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Orthopaedic/musculoskeletal</td>
<td>10</td>
<td>30–40</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Out-patient/spinal</td>
<td>10</td>
<td>10–15</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>
Appendix G

Delphi results following round two (%)

The Delphi results are given below as percentages. The numbers responding ‘Agree’ and ‘Strongly agree’ have been combined as have the numbers responding ‘Disagree’ and ‘Strongly disagree’.

The raw data from the second Delphi round is available from the Chartered Society of Physiotherapy.

The order of the results in this Appendix is slightly different to the order of the questions in the second Delphi round (Appendix E). The changes have been made to follow the order of the text in the guidelines.

Questions seven and eight in the Delphi questionnaire have been omitted in this Appendix. This is because the GDG disagreed with the Delphi results for these questions, on safety grounds. The questions concerned the circumstances in which tests for instability would be carried out. A fuller response from the GDG can be found in section 3.6.5.7.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Agree %</th>
<th>Neither %</th>
<th>Disagree %</th>
<th>Don’t know %</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following indicate increased likelihood of severe symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Looking to one side during a rear-end collision</td>
<td>85</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Poorly positioned headrest</td>
<td>88</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>These pre-existing factors indicate that a poor prognosis is likely following WAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-existing degenerative changes</td>
<td>93</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pre-trauma headaches</td>
<td>59</td>
<td>26</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Pre-trauma neck ache</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Low level of job satisfaction</td>
<td>85</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Injury occurring at 50 years of age and above</td>
<td>48</td>
<td>41</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Being female</td>
<td>26</td>
<td>41</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>The following post-injury factors suggest that a poor prognosis is likely following WAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache for more than six months following injury</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Neurological signs present after injury</td>
<td>93</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Prognosis and natural history

The natural history of WAD suggests that

It is good practice for physiotherapists to advise people with WAD that they are very likely to recover 100 0 0 0

Physiotherapy assessment and associated issues

This textbook could be recommend to assist physiotherapists in assessing people with WAD?

56 33 7 4
<table>
<thead>
<tr>
<th>Reference</th>
<th>Agree %</th>
<th>Neither %</th>
<th>Disagree %</th>
<th>Don't know %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Churchill Livingstone, Edinburgh.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Churchill Livingstone, Edinburgh.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Churchill Livingstone, Edinburgh.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butterworth Heinmann Oxford.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edinburgh.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2nd ed.) Churchill Livingstone, New York.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifford L (ed.) Topical Issues in Pain (series)</td>
<td>85</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

In the acute stage, entering physiotherapy services is best prioritised by:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>A physiotherapist working in the accident and emergency department</td>
<td>78</td>
<td>15</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>A physiotherapist assessing individual people by telephone</td>
<td>56</td>
<td>33</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>A physiotherapist screening individual people using the information</td>
<td>37</td>
<td>48</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>provided on the referral form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A physiotherapist screening individual people</td>
<td>85</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The following factors make an individual person a higher priority at the assessment/screening stage:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>The injury occurred more recently</td>
<td>89</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>The symptoms have been present over a longer</td>
<td>41</td>
<td>33</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>time period</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Person's activities of daily living are disrupted</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Person is off work</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Do these recognised barriers to recovery from chronic pain apply to people with WAD?

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>High fear of pain and movement (fearing that pain and/or movement leads</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>to harm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High tendency to catastrophise (thinking the worst about the pain)</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low self-efficacy (lacking confidence in ability to undertake a</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>particular activity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe anxiety</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evidence of severe depression</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low pain locus of control (believing that it is impossible to control</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>the pain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High use of passive coping strategies (withdrawal/passing on responsibility for pain control to others)</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Agree</td>
<td>Neither</td>
<td>Disagree</td>
<td>Don't know</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Series of previously failed treatments</td>
<td>92</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Person currently off work as a result of the pain</td>
<td>85</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Chronic widespread pain</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Poor understanding of the healing mechanism</td>
<td>80</td>
<td>12</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Non compliance with treatment and advice</td>
<td>88</td>
<td>8</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Problems in relationships with others</td>
<td>92</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Negative expectations of treatment</td>
<td>81</td>
<td>15</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Unrealistic expectations of treatment</td>
<td>86</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Failure of the physiotherapist to address an individual person’s needs</td>
<td>80</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poor clinical reasoning by the physiotherapist</td>
<td>69</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The following post-injury factors suggest that a poor prognosis is likely following WAD

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unresolved legal issues</td>
<td>81</td>
<td>15</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The barriers to recovery should be assessed at the following stages after injury:

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2 weeks after injury</td>
<td>56</td>
<td>18</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>After 2 weeks and before 6 weeks</td>
<td>81</td>
<td>8</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>After 6 weeks and before 12 weeks</td>
<td>85</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>At 12 weeks or more</td>
<td>82</td>
<td>7</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

A major aim of physiotherapy treatment should be

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>To relieve symptoms</td>
<td>93</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>To improve function</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>To facilitate empowerment of the person</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>To get the person back to normal activity/work</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Physiotherapy intervention for WAD in the acute stage (zero to two weeks after injury)
The following should be used to enhance the effect of rest and analgesia in reducing pain

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft collars</td>
<td>15</td>
<td>11</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>Manual mobilisation</td>
<td>48</td>
<td>30</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Active exercise</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A general active exercise programme</td>
<td>92</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>An active individual exercise programme following assessment</td>
<td>93</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interferential therapy</td>
<td>7</td>
<td>30</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>Ultrasound treatment</td>
<td>11</td>
<td>26</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>Massage</td>
<td>33</td>
<td>26</td>
<td>41</td>
<td>0</td>
</tr>
</tbody>
</table>
Soft tissue techniques

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>19</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

TENS

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>30</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Laser treatment

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>65</td>
<td>8</td>
</tr>
</tbody>
</table>

Infrared light

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11</td>
<td>85</td>
<td>0</td>
</tr>
</tbody>
</table>

Traction

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16</td>
<td>76</td>
<td>0</td>
</tr>
</tbody>
</table>

Acupuncture

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>33</td>
<td>26</td>
<td>8</td>
</tr>
</tbody>
</table>

Relaxation

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>26</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

Education about the origin of the pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Advice about coping strategies

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The effect of early manual mobilisation techniques versus initial rest and soft collar

Early manual mobilising is more effective than rest and a soft collar in improving neck range of movement

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>15</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Early manual mobilisation is more effective than initial rest in improving function

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>15</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

An early physiotherapy programme versus initial rest and an exercise routine

Early physiotherapy ‘as usual’ is more effective than initial rest followed by an exercise routine in improving function.

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>26</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Physiotherapy intervention for WAD in the sub acute stage (i.e. more than 2 weeks and less than 12 weeks after injury)

Manipulation and manual mobilisation

Manipulation alone reduces pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
<td>55</td>
<td>0</td>
</tr>
</tbody>
</table>

Manual mobilisation alone reduces pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>26</td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

Manual mobilisation is more effective than a combination of ice and TENS in reducing pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>45</td>
<td>26</td>
<td>7</td>
</tr>
</tbody>
</table>

Manual mobilisation more effective than acupuncture in reducing pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>45</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Manual mobilisation more effective than a single manipulation in reducing pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>44</td>
<td>19</td>
<td>4</td>
</tr>
</tbody>
</table>

Combined manipulation and manual mobilisation reduces pain

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>40</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Combined manipulation and manual mobilisation is effective in improving function

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>26</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Adverse events resulting from cervical manipulation

The risk of serious adverse events (e.g. vertebrobasilar accidents) from manipulation is low

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Minor or moderate adverse events (e.g. headache or nausea) occur in around half of all people receiving cervical manipulation

<table>
<thead>
<tr>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>26</td>
<td>33</td>
<td>11</td>
</tr>
</tbody>
</table>
The effect of other interventions

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acupuncture is effective in reducing neck pain</td>
<td>52</td>
<td>19</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Soft collars are effective in reducing pain</td>
<td>19</td>
<td>33</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Education is effective in improving neck function</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Advice about coping strategies is effective in enabling people to return to normal activities</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Traction is effective in reducing neck pain</td>
<td>26</td>
<td>22</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>TENS is effective in reducing neck pain</td>
<td>59</td>
<td>22</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Infrared light is effective in reducing neck pain</td>
<td>4</td>
<td>29</td>
<td>63</td>
<td>4</td>
</tr>
<tr>
<td>Laser treatment is effective in reducing neck pain</td>
<td>4</td>
<td>26</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>Interferential therapy is effective in reducing neck pain</td>
<td>11</td>
<td>30</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>Ultrasound treatment is effective in reducing neck pain</td>
<td>22</td>
<td>26</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Massage is effective in reducing neck pain</td>
<td>65</td>
<td>23</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Soft tissue techniques are effective in reducing neck pain</td>
<td>78</td>
<td>11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Muscle retraining and deep neck flexor activity is effective in improving function</td>
<td>78</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Phasic exercise (rapid eye-hand-neck movements) is effective in improving function</td>
<td>15</td>
<td>46</td>
<td>12</td>
<td>27</td>
</tr>
</tbody>
</table>

Physiotherapy intervention for people with WAD in the chronic stage (i.e. more than 12 weeks after injury)

Manipulation and manual mobilisation

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual mobilisation reduces pain</td>
<td>78</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Manipulation reduces pain</td>
<td>59</td>
<td>30</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Manual mobilisation is as effective as ice in reducing pain</td>
<td>30</td>
<td>48</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Manual mobilisation is more effective than a combination of ice and TENS in reducing pain</td>
<td>33</td>
<td>52</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Manual mobilisation is more effective than acupuncture in reducing pain</td>
<td>11</td>
<td>58</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Manual mobilisation is more effective than a single manipulation in reducing pain</td>
<td>39</td>
<td>46</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Combined manipulation and manual mobilisation reduce pain</td>
<td>70</td>
<td>22</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Combined manipulation and manual mobilisation is effective in improving function</td>
<td>70</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Comparing manipulation and exercise combined with manipulation alone

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulation and exercise is more effective than manipulation alone in reducing long term pain</td>
<td>85</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Manipulation and exercise is more effective than manipulation alone in terms of patient satisfaction</td>
<td>74</td>
<td>15</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Interventions</td>
<td>Agree</td>
<td>Neither</td>
<td>Disagree</td>
<td>Don't know</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Manipulation and exercise is more effective than manipulation alone in improving function</td>
<td>89</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Exercise therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard exercise (stretching, isometric, isokinetic) is more effective than phasic exercise (rapid eye-hand-neck movements) in improving function</td>
<td>54</td>
<td>15</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Strengthening exercise is more effective than endurance training in reducing pain</td>
<td>4</td>
<td>66</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Strengthening exercise is more effective than endurance training in improving function</td>
<td>4</td>
<td>60</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Strengthening exercise is more effective than body awareness training in reducing pain</td>
<td>11</td>
<td>54</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>Strengthening exercise is more effective than body awareness training in improving function</td>
<td>19</td>
<td>50</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Strengthening exercise is more effective than passive physiotherapy in reducing pain</td>
<td>62</td>
<td>23</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Strengthening exercise is more effective than passive physiotherapy in improving function</td>
<td>76</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Group exercise is effective in improving function</td>
<td>68</td>
<td>24</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Proprioceptive exercise improves neck function</td>
<td>73</td>
<td>19</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Neck schools are effective in improving function</td>
<td>39</td>
<td>46</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Extension retraction exercises are effective in improving neck function</td>
<td>58</td>
<td>31</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Mobilising exercises are effective in reducing pain</td>
<td>96</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exercises based on individual patient assessment is more effective than a generalised exercise programme in improving function</td>
<td>92</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Advice about coping strategies combined with exercise is more effective than exercise alone in returning to normal activity</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acupuncture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acupuncture is more effective than massage in reducing pain</td>
<td>19</td>
<td>48</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Acupuncture is more effective than sham acupuncture in reducing pain</td>
<td>33</td>
<td>19</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>Multidisciplinary psychosocial rehabilitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidisciplinary rehabilitation is more effective than traditional rehabilitation (physiotherapy, rest, sick leave) in improving function</td>
<td>78</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>
Outcome measures

The following outcome measures are likely to be most effective for assessing progress of people with WAD

<table>
<thead>
<tr>
<th>Measure</th>
<th>Agree %</th>
<th>Neither %</th>
<th>Disagree %</th>
<th>Don't know %</th>
</tr>
</thead>
<tbody>
<tr>
<td>For pain: The visual analogue scale</td>
<td>93</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For function: The neck disability index</td>
<td>78</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>For return to usual activities: The physiotherapy specific functional scale</td>
<td>45</td>
<td>22</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>For a patient centred measure: Measure yourself medical outcome profile (MYMOP)</td>
<td>41</td>
<td>15</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>For fear of movement: The Tampa Scale for Kinesiophobia (TSK)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>For quality of life: SF-36</td>
<td>58</td>
<td>15</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>For patient satisfaction: The CSPs Clinical Audit tool, The patient feedback questionnaire</td>
<td>26</td>
<td>22</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>For anxiety and depression: The hospital anxiety and depression questionnaire</td>
<td>54</td>
<td>15</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>For self-efficacy: The Chronic Pain Self-Efficacy Scale (CPSS)</td>
<td>44</td>
<td>15</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>
Appendix H

Indications for x-rays (XR), computed tomography (CT) and magnetic resonance imaging (MRI)

<table>
<thead>
<tr>
<th>Clinical/diagnostic problem</th>
<th>Investigation</th>
<th>Recommendation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conscious person with head and/or facial injuries</td>
<td>XR cervical spine</td>
<td>Indicated only in specific circumstances</td>
<td>XR will not be necessary provided that all five of the following criteria are met: • No midline cervical tenderness • No focal neurological deficit • Normal alertness • No intoxication • No painful distracting injury.</td>
</tr>
<tr>
<td>Unconscious person with head injury</td>
<td>XR cervical spine, CT</td>
<td>Indicated</td>
<td>Good quality XRs should demonstrate the whole of the cervical spine down to T1/2. If the cervico-thoracic junction is not clearly seen or there are any possible areas of fracture then CT is required. Where available, spiral CT may be used as an alternative to XR, and is essential if the cervico-thoracic junction is not clearly seen on XR. Both techniques may be difficult in the severely traumatised person, and manipulation must be avoided.</td>
</tr>
<tr>
<td>Neck injury with pain</td>
<td>XR cervical spine</td>
<td>Indicated</td>
<td>Discuss with department of clinical radiology.</td>
</tr>
<tr>
<td></td>
<td>CT / MRI</td>
<td>Specialised investigation</td>
<td>May be valuable when XR is equivocal or lesion complex.</td>
</tr>
<tr>
<td>Neck injury with neurological deficit</td>
<td>XR cervical spine</td>
<td>Indicated</td>
<td>For orthopaedic assessment. XR must be of good quality to allow accurate interpretation.</td>
</tr>
<tr>
<td></td>
<td>MRI</td>
<td>Indicated</td>
<td>MRI is the best and safest method of demonstrating intrinsic cord damage, cord compression, ligamentous injuries, and vertebral fractures at multiple levels.</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>Specialised investigation</td>
<td>CT myelography may be considered if MRI is not practicable.</td>
</tr>
<tr>
<td>Neck injury with pain but XR initially normal; suspected ligamentous injury</td>
<td>XR cervical spine</td>
<td>Specialised investigation</td>
<td>Views taken in flexion and extension (consider fluoroscopy) as achieved by the person with no assistance and under medical supervision.</td>
</tr>
<tr>
<td></td>
<td>MRI</td>
<td>Specialised investigation</td>
<td>MRI demonstrates ligamentous injuries.</td>
</tr>
<tr>
<td>Clinical/diagnostic problem</td>
<td>Investigation</td>
<td>Recommendation</td>
<td>Comment</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Possible atlanto-axial subluxation</td>
<td>XR</td>
<td>Indicated</td>
<td>A single lateral cervical spine XR with the person in supervised comfortable flexion should reveal any significant subluxation in person with rheumatoid arthritis, Down's syndrome etc.</td>
</tr>
<tr>
<td>MRI</td>
<td>Specialised investigation</td>
<td>MRI in flexion/extension shows effect on cord when XR is positive or neurological signs are present.</td>
<td></td>
</tr>
<tr>
<td>Neck pain, brachialgia, degenerative change</td>
<td>XR</td>
<td>Indicated only in specific circumstances</td>
<td>Neck pain generally improves or resolves with conservative treatment. Degenerative changes begin in early middle age and are often unrelated to symptoms.</td>
</tr>
<tr>
<td>MRI</td>
<td>Specialised investigation</td>
<td>Consider MRI and specialist referral when pain affects lifestyle or when there are neurological signs. CT myelography may occasionally be required to provide further delineation or when MRI is unavailable or impossible.</td>
<td></td>
</tr>
</tbody>
</table>

Indicated is an investigation most likely to contribute to clinical diagnosis and management.

Specialised investigation – frequently complex, time-consuming or resource-intensive investigation which will usually only be performed after discussion with the radiologist or in the context of locally agreed protocols.

Indicated only in specific circumstances – non routine studies which will only be carried out if a clinician provides cogent reasons or if the radiologist feels the examination represents an appropriate way of furthering the diagnosis and management of the patient.
Appendix I

The reviewers’ comments sheet

Clinical guidelines for the physiotherapy management of whiplash associated disorder (WAD)

Reviewers’ comments
We will acknowledge all reviewers in the guidelines. Please include details that you would like including in the final publication in the table below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualifications</th>
<th>Post</th>
<th>Speciality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCSP etc.</td>
<td>e.g. senior II physiotherapist</td>
<td>e.g. musculoskeletal physiotherapy</td>
</tr>
</tbody>
</table>

Please aim to make a general comment on each of the following.

Are the guidelines readable?

Are there any major concerns or issues that you would like to raise?

Do you think that the guidelines are clinically relevant?

What are the implications for your trust / university / other employer (please indicate which you are referring to)

What comments can you make on the presentation of the guidelines?

Are there omissions?

Please note specific points, inaccuracies or typing errors in the table below:

<table>
<thead>
<tr>
<th>Page</th>
<th>comment</th>
</tr>
</thead>
</table>

Please continue on another sheet of paper if you have further comments.
Appendix J

Reflective practice record for WAD

1. Describe a practice-based event

2. How did you respond to the event (thoughts, actions, feelings)?

3. Why did you respond as you did?

What specific issues does the event raise in relation to question/s posed in the WAD guidelines?

4. Relevant WAD question/s (Section 4)

5. Evidence-based practice issues:

6. Clinical relevance issues:

7. WAD recommendation issues:

From this event, what have you learnt about:

8. Formal decision-making?

9. Intuitive decision-making?

10. Ethical decision-making?
Appendix K

Glossary and abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory movements</td>
<td>Joint movements that cannot be performed voluntarily or in isolation by the patient.</td>
</tr>
<tr>
<td>Acupuncture</td>
<td>Procedure of Chinese origin involving the insertion of thin needles into certain areas of the body to relieve pain.</td>
</tr>
<tr>
<td>Acute (stage of WAD)</td>
<td>Symptoms in the first two weeks after injury.</td>
</tr>
<tr>
<td>Adson manoeuvre</td>
<td>A test for thoracic outlet syndrome. Also known as Adson’s Test.</td>
</tr>
<tr>
<td>Aetiology</td>
<td>The causes of a disease or abnormal condition.</td>
</tr>
<tr>
<td>Allen’s test</td>
<td>A test for occlusion of the radial or ulnar artery.</td>
</tr>
<tr>
<td>Analgesic ladder</td>
<td>The order in which analgesic drugs should be tried e.g. (1) Non-opioid drugs e.g. aspirin, paracetamol, NSAIDs (2) Weak opioids e.g. Codeine (3) Strong opioids e.g. morphine, diamorphine.</td>
</tr>
<tr>
<td>Behavioural therapy</td>
<td>A psychological treatment that aims to remove conditioned responses to symptoms, whatever the underlying diagnosis. Desensitisation, operant conditioning, and aversion therapy are examples of behavioural therapy.</td>
</tr>
<tr>
<td>Biomedical</td>
<td>Relating to the biological and medical sciences.</td>
</tr>
<tr>
<td>Blinding</td>
<td>Concealment of treatments in a randomised controlled trial from trial participants, clinicians and/or outcome assessors to reduce biases for or against particular treatments, that may influence the outcomes.</td>
</tr>
<tr>
<td>Black flags</td>
<td>The actual barriers preventing a person from returning to work.</td>
</tr>
<tr>
<td>Blue flags</td>
<td>A person’s perception of the barriers preventing them from returning to work.</td>
</tr>
<tr>
<td>Brachialgia</td>
<td>Severe pain in the arm.</td>
</tr>
<tr>
<td>Catastrophising</td>
<td>A person viewing their situation with a catastrophic outcome, e.g. someone thinking that the neck pain they have had for a few weeks will lead to a chronic condition.</td>
</tr>
<tr>
<td>Chartered Society of Physiotherapy (CSP)</td>
<td>The professional body for physiotherapists in the UK.</td>
</tr>
<tr>
<td>Chiropractic treatment</td>
<td>Based on the theory that a person’s state of health is determined by the condition of the nervous system. The most important component is the manual treatment of joints and muscles.</td>
</tr>
<tr>
<td>Chronic (stage of WAD)</td>
<td>Persistent symptoms lasting more than 12 weeks after injury.</td>
</tr>
<tr>
<td>Clonus</td>
<td>A rapid succession of relaxations and contractions of a muscle usually resulting from a sustained stretching stimulus.</td>
</tr>
<tr>
<td>Cochrane Collaboration</td>
<td>An international non-profit and independent organisation producing and disseminating systematic reviews of healthcare interventions. The Cochrane Database of Systematic Reviews and other useful databases are published on The Cochrane Library.</td>
</tr>
<tr>
<td>Cognition</td>
<td>The mental process of knowing, including thinking, reasoning, learning and judging.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Cognitive behavioural therapy</td>
<td>A talking therapy conducted by a trained therapist that identifies and modifies negative patterns of thinking, changes emotional responses and behaviour.</td>
</tr>
<tr>
<td>Controlled clinical trial</td>
<td>A prospective, experimental study that compares a group of people that are given a therapy of interest with at least one other control group, who are usually given standard therapy, a placebo/sham therapy or no treatment.</td>
</tr>
<tr>
<td>Coping strategies</td>
<td>A person’s style, or strategy for coping with situations that involve psychological stress or threat.</td>
</tr>
<tr>
<td>Correlation study</td>
<td>A statistical study that examines the degree in which one random variable is associated with or can be predicted from another.</td>
</tr>
<tr>
<td>CT (Computed Tomography) scan</td>
<td>A special radiographic technique that uses a computer to assimilate multiple X-ray images into a 2 dimensional cross-sectional image.</td>
</tr>
<tr>
<td>Delphi method</td>
<td>An iterative method of gaining consensus agreement from experts or other individuals on a topic for which there is inconsistent, little or no empirical evidence.</td>
</tr>
<tr>
<td>Double blind</td>
<td>Same as Blinding, however both trial participants and clinicians are unaware of the therapy received.</td>
</tr>
<tr>
<td>Dynamic resisted exercises</td>
<td>Exercise where movement is resisted through a range.</td>
</tr>
<tr>
<td>Dysarthria</td>
<td>Weakness or lack of coordination of the muscles required for speech, preventing clear pronunciation of words.</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>Difficulty swallowing.</td>
</tr>
<tr>
<td>Electroacupuncture</td>
<td>A form of acupuncture using low frequency electrically stimulated needles to produce analgesia and anaesthesia and to treat disease.</td>
</tr>
<tr>
<td>Electrotherapy</td>
<td>The therapeutic use of electrophysical agents.</td>
</tr>
<tr>
<td>EMG (Electromyography) biofeedback</td>
<td>Recording of a muscle’s electrical activity.</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>The study of the causes, prevalence and spread of disease in a community.</td>
</tr>
<tr>
<td>Extension retraction exercises</td>
<td>Active exercises for the upper cervical atlanto-occipital region (chin tucks).</td>
</tr>
<tr>
<td>External validity</td>
<td>The extent to which a research finding is generalisable to the population at large.</td>
</tr>
<tr>
<td>Fear avoidance</td>
<td>Avoidance of activity resulting from a person’s belief that the experience of pain will lead to further damage and or (re)injury.</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>A disorder characterised by musculoskeletal pain, spasms, stiffness, fatigue and severe sleep disturbances.</td>
</tr>
<tr>
<td>Guideline development group (GDG)</td>
<td>Team of clinical experts, research methodologists, patient representatives and administrators who work to produce a guideline.</td>
</tr>
<tr>
<td>Health Professions Council (HPC)</td>
<td>An independent, UK-wide, regulatory body that is responsible for setting and maintaining standards of professional training, performance and conduct for healthcare professions, including the physiotherapy.</td>
</tr>
<tr>
<td>Hydrotherapy</td>
<td>Physiotherapy treatment performed in water, utilising its physical properties.</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>An assumption made in advance, which is formally tested using statistical tests to confirm, modify or disprove it.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ice therapy</td>
<td>Treating injuries with ice.</td>
</tr>
<tr>
<td>Infrared light therapy</td>
<td>Treatment using different types of infrared radiation, such as heating pads or incandescent lights.</td>
</tr>
<tr>
<td>Instability tests</td>
<td>Specific tests to check the structural integrity of the upper cervical ligament complex.</td>
</tr>
<tr>
<td>Intention-to-treat</td>
<td>Participants in a clinical trial are analysed according to the treatment the randomisation process allocated them to, whether they received that treatment or not.</td>
</tr>
<tr>
<td>Interferential therapy</td>
<td>A medium frequency electrical modality transmitted using surface electrodes designed to increase circulation and decrease pain.</td>
</tr>
<tr>
<td>Interscapular</td>
<td>The section of the upper back between the shoulders.</td>
</tr>
<tr>
<td>In vivo</td>
<td>In a living body. Usually refers to studies conducted within a living organism.</td>
</tr>
<tr>
<td>In vitro</td>
<td>Outside the living body and in an artificial or laboratory environment e.g. in a test tube.</td>
</tr>
<tr>
<td>Isokinetic exercise</td>
<td>Exercise performed with an apparatus that provides variable resistance to a movement, in order to maintain a constant speed no matter how much effort is exerted. Such exercise is used to test and improve muscular strength and endurance.</td>
</tr>
<tr>
<td>Isometric exercise</td>
<td>Exercises that contract the muscles without moving the involved parts of the body in order to improve fitness and build up muscle strength.</td>
</tr>
<tr>
<td>Kinaesthetic sensibility</td>
<td>Awareness of movement within the body. See also Proprioception.</td>
</tr>
<tr>
<td>Kinesophobia</td>
<td>A debilitating fear of movement resulting from a feeling of vulnerability to a painful injury or reinjury.</td>
</tr>
<tr>
<td>Laser</td>
<td>A medical instrument that produces a powerful beam of light, which can emit intense heat when focused at close range.</td>
</tr>
<tr>
<td>Likert scale</td>
<td>A point scoring system often used to measure attitudes by asking respondents the degree with which they agree with statements. For example, strongly agree, no opinion or strongly disagree.</td>
</tr>
<tr>
<td>Locus of control</td>
<td>The extent to which a person feels in control of things around them and their own behaviour.</td>
</tr>
<tr>
<td>Lordosis</td>
<td>Forward curvature of the spine normally occurring in the cervical and lumbar regions.</td>
</tr>
<tr>
<td>Lhermittes sign</td>
<td>Sudden electric-like shocks radiating down the arms, trunk or legs on head and neck flexion, which is sometimes seen in cervical cord compression.</td>
</tr>
<tr>
<td>Maitland principles</td>
<td>A concept of manipulative physiotherapy.</td>
</tr>
<tr>
<td>Manipulative therapy</td>
<td>The passive, sometimes forceful movement of bones, joints and soft tissues carried out by trained therapists, usually to relieve pain, reduce joint stiffness or correct deformity. Manipulation and manual mobilisation are forms of manipulative therapy.</td>
</tr>
<tr>
<td>Manipulation</td>
<td>A high velocity, small amplitude thrust performed by the therapist at the end of the available range of movement that is not under the control of the patient.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Manual mobilisation</td>
<td>Small rhythmical oscillations or sustained pressure by the therapist within the range of movement that can be resisted by the patient if the procedure becomes too painful.</td>
</tr>
<tr>
<td>Massage</td>
<td>Systematic rubbing of the skin and deeper tissues. Massage helps to improve circulation, prevent scarring in injured tissues, relax muscle spasms, improve muscle tone and reduce swelling.</td>
</tr>
<tr>
<td>Mechanical neck disorders</td>
<td>Non-specific neck problems with an absence of red flags and known pathology.</td>
</tr>
<tr>
<td>Motor control</td>
<td>The ability of the central nervous system to direct and control movement.</td>
</tr>
<tr>
<td>MRI (Magnetic Resonance Imaging)</td>
<td>Magnetic fields and radio frequencies are used to produce clear images of body tissue.</td>
</tr>
<tr>
<td>Multidisciplinary</td>
<td>Involving professionals from several disciplines, such as physiotherapists, orthopaedic surgeons, nurses, psychologists, etc.</td>
</tr>
<tr>
<td>Multimodal treatment</td>
<td>A treatment programme including different modalities e.g. exercise, manual mobilisation and education.</td>
</tr>
<tr>
<td>Myelography</td>
<td>An invasive procedure that involves injecting a radio-opaque substance into the spinal cord in order to assist in the diagnosis of diseases of the spine or spinal cord.</td>
</tr>
<tr>
<td>National Health Service (NHS)</td>
<td>The government-led health system in the UK.</td>
</tr>
<tr>
<td>National Institute for Health and Clinical Excellence</td>
<td>An independent organisation funded by the NHS responsible for providing national guidance on the promotion of good health and the prevention and treatment of ill health.</td>
</tr>
<tr>
<td>Neck schools</td>
<td>A concept of group treatment programmes to treat neck pain.</td>
</tr>
<tr>
<td>Neurological</td>
<td>Relating to the nervous system.</td>
</tr>
<tr>
<td>Nociception</td>
<td>The sensation of feeling pain.</td>
</tr>
<tr>
<td>Non steroidal anti-inflammatory drugs (NSAIDs)</td>
<td>A large group of drugs, including aspirin and ibuprofen, that relieve pain and reduce inflammation by prohibiting the formation of prostaglandins.</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>Involuntary, rapid, rhythmic eye movements.</td>
</tr>
<tr>
<td>Outcome</td>
<td>The result of treatment of a patient or client.</td>
</tr>
<tr>
<td>Outcome measure</td>
<td>A validated test or scale for measuring a particular outcome of interest in order to assess the effectiveness of a therapy or service.</td>
</tr>
<tr>
<td>Outcome assessment</td>
<td>The process of measuring an outcome using an outcome measure.</td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>Experiencing an unusual sensation, e.g. tingling, burning, itching, etc.</td>
</tr>
<tr>
<td>Passive accessory intervertebral movement (PAIVM)</td>
<td>Investigation of accessory gliding movements (joint movements that cannot be performed voluntarily or in isolation) in a joint.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Passive movement</td>
<td>Any movement of a joint which is produced by any means other than the particular muscles related to that particular joint movement. It includes both mobilization and manipulation.</td>
</tr>
<tr>
<td>Passive physiological intervertebral movement (PPIVM)</td>
<td>Investigation of passive physiological movements (joint movements that could be performed voluntarily or in isolation) to confirm restrictions seen on active movement testing.</td>
</tr>
<tr>
<td>Patient empowerment</td>
<td>Enabling patients to participate in decisions about health care. This can be either on a personal level, making decisions about their own care or as a member of the public in the planning, provision and monitoring of health care services.</td>
</tr>
<tr>
<td>PEDro (Physiotherapy Evidence Database)</td>
<td>Database of randomised controlled clinical trials, systematic reviews and evidence-based clinical practice guidelines in physiotherapy.</td>
</tr>
<tr>
<td>Phasic exercises</td>
<td>Exercise involving rapid eye-hand-neck-arm movements.</td>
</tr>
<tr>
<td>Physical agents</td>
<td>A physiotherapy modality that is not manual e.g. electrotherapy and ice.</td>
</tr>
<tr>
<td>Physical therapy</td>
<td>The use of physical approaches to promote, maintain and restore physical, psychological and social well-being. Alternative term for physiotherapy.</td>
</tr>
<tr>
<td>Placebo</td>
<td>An inactive treatment made to look and feel the same as an active treatment. It is usually given to the control group in a randomised controlled trial in order to mask which treatment the patient has received and therefore reduce any potential bias.</td>
</tr>
<tr>
<td>PRODIGY guidance</td>
<td>Source of clinical knowledge based on the best available evidence about common conditions and symptoms managed in primary care.</td>
</tr>
<tr>
<td>Prognostic factors</td>
<td>Factors that can be used to predict the patient's outcome or the course their recovery will take.</td>
</tr>
<tr>
<td>Proprioception</td>
<td>The reception of stimuli from within the body, including sense of position (e.g. the awareness of the joints at rest) and kinaesthesia (see Kinaesthetic).</td>
</tr>
<tr>
<td>Psychopathology</td>
<td>The study of the causes, processes and manifestations of mental disorders.</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>Combination of psychological and social factors.</td>
</tr>
<tr>
<td>Pulsed electromagnetic therapy (PEMT)</td>
<td>A generic term for treatment using pulsed-electromagnetic energy.</td>
</tr>
<tr>
<td>p-value (p=)</td>
<td>The level of statistical significance of the results in a statistical test. It is the probability that the results observed could have occurred by chance. A p-value of less than 0.05 is generally considered as statistically significant. See Statistically significant.</td>
</tr>
<tr>
<td>Quasi-</td>
<td>Almost, seemingly.</td>
</tr>
<tr>
<td>Quasi-randomised</td>
<td>Randomising trial participants to groups using a method that is not completely random, e.g. even and odd hospital numbers or alternate patients. See Randomised controlled trial.</td>
</tr>
<tr>
<td>Randomised controlled trial (RCT)</td>
<td>A clinical trial comparing two or more groups of people, who are given different treatments or interventions. People are allocated to groups at random (see Randomisation) and, if possible, the trial subjects and those measuring the outcomes are not aware which treatment is allocated to which subject (see Blinding).</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Randomisation</td>
<td>Assigning participants in a randomised controlled trial to treatment groups on a random basis in an attempt to ensure the groups are balanced.</td>
</tr>
<tr>
<td>Red flags</td>
<td>Factors that may indicate serious pathology.</td>
</tr>
<tr>
<td>Reflective practice</td>
<td>Professional activity in which the practitioner thinks critically about practice and as a result may modify practice or behaviour and/or modify learning needs.</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>Helping individuals regain skills and abilities that have been lost as a result of illness, injury or disease in order to maximise their physical, mental and social functioning.</td>
</tr>
<tr>
<td>Relaxation exercises</td>
<td>Exercises to address muscle tension that accompanies pain.</td>
</tr>
<tr>
<td>Reliability</td>
<td>The extent to which the results of a study can be reproduced if the study is carried out again exactly as reported.</td>
</tr>
<tr>
<td>Self efficacy silence</td>
<td>An individual's belief that he or she is capable of successfully performing a certain set of behaviours.</td>
</tr>
<tr>
<td>Shaken baby syndrome</td>
<td>Severe whiplash-type injuries observed in babies or children who have been shaken violently, causing retinal haemorrhages or convulsions, which could lead to intracranial bleeding from tearing of cerebral blood vessels.</td>
</tr>
<tr>
<td>Sham</td>
<td>A dummy procedure made to look and feel like an active therapy. See Placebo.</td>
</tr>
<tr>
<td>Short-wave diathermy</td>
<td>High frequency, short-wave electrical currents with a wavelength of 11.062 metres, used to provide heat deep into the body.</td>
</tr>
<tr>
<td>Single blinded</td>
<td>When either the patient or the person measuring clinical outcomes in a clinical trial is unaware of the treatment being given to the patient. See Blinding.</td>
</tr>
<tr>
<td>Slump test</td>
<td>A test that combines cervical/trunk flexion, straight leg raise (SLR) and ankle dorsiflexion and is used to assess neural tension by reproducing the subject's symptoms.</td>
</tr>
<tr>
<td>Soft collar</td>
<td>Foam neck brace used to restrict movement of the head and neck.</td>
</tr>
<tr>
<td>Soft tissue techniques</td>
<td>Usually manual techniques used to treat soft tissues and related neural and vascular components in the body.</td>
</tr>
<tr>
<td>Somatisation</td>
<td>Process by which psychological events or needs are expressed as physical symptoms.</td>
</tr>
<tr>
<td>Statistically significant</td>
<td>The results of a study have probably not occurred by chance and a true difference has been observed.</td>
</tr>
<tr>
<td>Subacute (stage of WAD)</td>
<td>Symptoms lasting more than two weeks and up to 12 weeks since injury.</td>
</tr>
<tr>
<td>Supine</td>
<td>Lying on the back, face upwards.</td>
</tr>
<tr>
<td>Systematic review</td>
<td>A scientific method for identifying, appraising, synthesising and communicating all the available research on a particular topic using pre-determined criteria.</td>
</tr>
<tr>
<td>Transcutaneous Electrical Nerve Stimulation (TENS)</td>
<td>The use of electrical fields via electrodes applied through the skin in order to relieve pain.</td>
</tr>
<tr>
<td>Thermotherapy</td>
<td>Using heat or cold as a treatment for disease or injury.</td>
</tr>
<tr>
<td>Thoracic outlet syndrome</td>
<td>Pain, numbness, tingling, and/or weakness in the arm and hand due to pressure on the nerves or blood vessels supplying the arm. Muscles and ligaments become tight or bony abnormalities form in the thoracic outlet area of the body i.e. behind the collar bone.</td>
</tr>
</tbody>
</table>
Traction
A manual or mechanical modality to distract joint surfaces. It can either be intermittent or a sustained force.

Trigger point
A highly sensitive point within the muscle or myofascial tissue, that produces a painful response when stimulated with touch, pain or pressure.

Ultrasound
The diagnostic or therapeutic use of high-frequency sound waves to produce a mechanical effect and/or heat.

Upper limb tension test (ULTT)
Test used to assess the neural mobility of the upper quadrant.

Validity
The extent to which a research finding is accurate and measures what it purports to measure.

Vertebrobasilar
Refers to the vertebral and basilar arteries at the base of the brain.

Visual analogue scale (VAS)
A scale used to provide a quantitative measure of a subjective outcome, such as pain. The scale is usually a 10cm line with definitions at either end, e.g. no pain at 0cm and worse pain ever felt at the 10cm end. The patient is asked to indicate where, on the line, best describes their pain.

Whiplash associated disorder (WAD)
A variety of symptoms that result from bony and/or soft tissue injuries sustained in a whiplash injury.

Yellow flags
Psychological and sociological factors that may predict chronicity i.e. long-term disability and work-loss.

Zygapophyseal joints
Synovial joints between articular processes of the vertebrae. Also known as facet joints.

Bibliography
The following resources were used in compiling this glossary:

Appendix L

References in Alphabetical Order

The references in section 14 of this guideline are given below in alphabetical order by first author. The numbering refers to the reference number in the text, section 14 and appendix B.

Crowe, H (1928). *Injuries to the cervical spine.* In Annual meeting of Western Orthopaedic Association, San Francisco, California

Evans, DW, Foster, NE, Vogel, S and Breen, AC (2003). Implementing evidence-based practice in the UK physical therapy professions: Do they want it and do they need it? Poster presentation at 6th International forum for low back pain research in primary care, Linkping, Sweden. May 2003

